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Preface

Recent years have witnessed a rapid development of active control of various
mechanical systems. With increasingly strict requirements for control speed and
system performance, the unavoidable time delays in both controllers and actuators
have become a serious problem. For instance, all digital controllers, analogue anti-
aliasing and reconstruction filters exhibit a certain time delay during operation,
and the hydraulic actuators and human being interaction usually show even more
significant time delays. These time delays, albeit very short in most cases, often
deteriorate the control performance or even cause the instability of the system, be-
cause the actuators may feed energy at the moment when the system does not need
it. Thus, the effect of time delays on the system performance has drawn much at-
tention in the design of robots, active vehicle suspensions, active tendons for tall
buildings, as well as the controlled vibro-impact systems. On the other hand, the
properly designed delay control may improve the performance of dynamic sys-
tems. For instance, the delayed state feedback has found its applications to the
design of dynamic absorbers, the linearization of nonlinear systems, the control of
chaotic oscillators, etc.

Most controlled mechanical systems with time delays can be modeled as the
dynamic systems described by a set of ordinary differential equations with time
delays. Finite as the number of unknowns in the ordinary differential equations is,
the time delay implies that the change of a system state depends on the previous
history of system. The solution space of such a set of delay differential equations,
hence, is of infinite dimensions. This gives rise to a tough problem to the theoreti-
cal analysis of delayed dynamic systems. Over the past decades, numerous
mathematicians have made great efforts to study the existence of solution, the os-
cillation property, the stability and the local bifurcation for delayed dynamic sys-
tems mainly in the frame of functional differential equations, and published a
number of excellent monographs. Among them, the books such as (Hale 1977),
(Qin et al. 1989), (Gopalsamy 1992), (Kuang 1993), (Hale and Lunel 1993) and
(Dickmann et al. 1995) are a few to name.
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From the viewpoint of an engineer, however, less attention has been paid to the
practical problems associated with delayed dynamic systems, such as the model-
ing and parametric estimation, the stability analysis when some system parameters
are to be designed, the dynamic performance of nonlinear delay systems, and so
forth. Except for the works by (Stépan 1989) and (Moiola and Chen 1997), few
monographs have been available for the engineers, who deal with various prob-
lems of control coming from mechanical engineering.

Motivated by the dynamics of controlled elastic structures, active vehicle sus-
pensions and four-wheel-steering vehicles, the authors have been engaged in the
dynamics of high dimensional mechanical systems with feedback time delays
over the past five years. Summarized in this monograph are mainly recent ad-
vances of authors in the system modeling and simplification, the stability analysis
of linear dynamic systems, the periodic vibration and bifurcation analysis of non-
linear dynamic systems, as well as the application of new approaches to controlled
elastic structures and ground vehicles. The contents of the book are organized as
following.

In Chapter 1, the models of a number of typical dynamic systems with time
delays are presented first. Then, two parametric estimation techniques are given
for the linear systems with short feedback time delays and the nonlinear systems
with arbitrary feedback time delays, respectively. Afterwards, the identifiability
problem of delayed dynamic systems is addressed.

Chapter 2 serves as an introduction to the theory of delay differential equations.
It begins with the theorem of existence and uniqueness of a solution of initial val-
ue problem, and then outlines the fundamental properties of linear delay differen-
tial equations. Afterwards, it turns to the stability analysis of delay differential
equations, offers a brief review for the important concepts and available methods,
such as the Pontryakin theorem, the Hassard theorem, the Michailov criterion and
the Nyquist diagram, with help of a number of illustrative examples.

The topics of Chapter 3 are the delay-independent stability of high dimensional
linear systems with multiple time delays and the stability switches of high dimen-
sional linear systems with an increase of a single time delay. Those high dimen-
sional systems may have a number of parameters to be designed so that the stabil-
ity analysis becomes a tough problem. On the basis of generalized Sturm theory, a
simple, but systematic approach is presented to solve the tough problem. The ap-
proach is demonstrated through the stability analysis of a tall building model
equipped with an active tendon, a quarter-car model of vehicle with an active sus-
pension, as well as a four-wheel-steering vehicle with driver’s delay.
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Chapter 4 is devoted to the interval stability of high dimensional linear systems
with a number of commensurate constant time delays. Based on the well-known
edge theorem and the method of Dixon’s resultant elimination, a new approach is
presented for testing the interval Hurwitz stability of a non-polytopic family of
quasi-polynomials. To demonstrate the approach, the interval Hurwitz stability is
analyzed for a single-degree-of-freedom system with two commensurate time de-
lays in the paths of displacement and velocity feedback, respectively.

In many applications, the time delays are much shorter than the shortest period
of system vibration. If this is the case, the approximate approaches are preferable.
Several approaches to the stability estimation are presented in Chapter 5, on the
basis of perturbation of eigenvalues, for high dimensional linear systems with a
short time delay in feedback. A criterion of interval stability is suggested by ap-
plying the Padé approximation to the exponential terms of time delay in the char-
acteristic function of a linear system. In engineering, it is very natural and popular
to simplify the controlled systems with a short time delay by replacing the delayed
terms with their Taylor expansions. A detailed analysis in Chapter 5, together with
the examples of both linear and nonlinear systems of single degree of freedom, in-
dicates that this simplification must be implemented with great care.

From Chapter 6, the book turns to the nonlinear dynamics of controlled systems
with time delays. To study the nonlinear dynamics of a system effectively, the
mathematical model for the system should be as simple as possible. In Chapter 6,
the theorem of central manifold and the theory of normal form are introduced first.
Then, the central manifold theory is combined with the singular perturbation tech-
nique to simplify the nonlinear delay systems composed of a soft component and a
rigid component. A typical example of this system is the quarter car model of ve-
hicle with an active suspension.

For a nonlinear dynamic system, the periodic motion is usually the second most
important topic, following the stability of equilibrium positions. Physically
speaking, there are two important causes for the emergence of a periodic motion if
the system is nonlinear. One is the well-known Hopf bifurcation at the equilibrium
of an autonomous system, and the other is the either external or parametric peri-
odic excitation in a non-autonomous system. In Chapter 7, the periodic motions
owing to the two causes are discussed in detail. With help of the theory of the
Hopf bifurcation, the periodic motions and their stability of an autonomous dy-
namic system under delayed control can be determined. Furthermore, if the gains
of delayed feedback can be scaled as small parameters, the method of multiple
scales can easily be used to analyze the dynamics of systems. In the case of strong
feedback involving time delays, numerical analysis becomes a possibly unique,
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but useful tool. The chapter presents a numerical approach to locate the periodic
motion of nonlinear systems with a time delay.

In Chapter 8, the delayed control of nonlinear systems is outlined. As an exam-
ple, the delayed resonator with velocity feedback is presented first to work as a vi-
bration absorber. Then, the stabilization to a critically stable system is presented.
Finally, controlling chaos, an interesting topic in the past two decades, is dis-
cussed through an example of the forced Duffing oscillator with delayed feedback.

The first author appreciates very much the kind host of Professors E. H. Dowell
and L. N. Virgin to his sabbatical of 1996 in The Department of Mechanical Engi-
neering and Material Science, Duke University, where he began to pay attention to
the dynamics of mechanical systems with delayed control. Most results presented
in this book come from the later projects supported in part by the National Natural
Science Foundation of China under the Grants 59625511 and 19972025, and in
part by the Ministry of Education under the Grant GG-130-10287-1593. The
authors wish to acknowledge all of the help and encouragement they have re-
ceived in the development of this book. Special thanks should be due to Dr. H. L.
Wang and Dr. W. F. Zhang, who carefully read the manuscript of the book and
made invaluable suggestions.

Haiyan Hu and Zaihua Wang
Nanjing , March, 2002
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1 Modeling of Delayed Dynamic Systems

Time delays may come from the retardation of either a controller or an actuator in
controlled mechanical systems. In many cases, it is possible to establish the
mathematical model for controlled mechanical systems with time delays from the
principles of mechanics and the theory of control. However, this is not always the
case. For a great number of practical systems, it is necessary to establish the model
on the basis of experimental data. For instance, it would be impossible to establish
the model for the retardation of human being if no experiments were made.

This chapter starts with a number of mathematical models for the controlled
mechanical systems with feedback time delays to be studied in this book. Then, it
presents two approaches to the parametric identification, including the estimation
of time delays, of linear and nonlinear delayed dynamic systems respectively on
the basis of experimental measurements, together with illustrative examples. As
the identification of time delays is a tough problem, the chapter outlines the identi-
fiability of time delays in some simple cases.

1.1 Mathematical Models

1.1.1 Dynamic Systems with Delayed Feedback Control
(1) Linear dynamic systems

The simplest physical model for controlled mechanical systems is a linear, time
invariant system of single degree of freedom as shown in Fig. 1.1.1. The equation
of motion of this system reads

mi(t)+ex(t)+he(t) = £(£)+g(f) (1.1.1)

where the dot represents the derivative with respect to time ¢, x(¢) the displace-
ment of system, f(¢) the external force, g(¢) the control force, m>0 the mass

coefficient, ¢>0 the damping coefficient and k>0 the stiffness coefficient, re-
spectively.
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Fig. 1.1.1. A single degree of freedom system under feedback control

To improve the dynamic performance of the system, the control force g(¢) is
often designed as a linear state feedback as following

g(O)=ux(t)+vx(), (1.1.2)
where # and V are constants, representing the feedback gains of displacement

path and velocity path, respectively. Because of unavoidable time delays in both
controllers and actuators, the actual control force should be modeled as

gO=ux(t—1,)+vx(t-1,), (1.1.3)

where 7, and 7, are the time delays in the paths of displacement and velocity
feedback, respectively. Thus, Eq. (1.1.1) becomes

mi()+ex()+hx(t)=ux(t—1)+Vx(t—1,)+ f (1) . (1.1.4)

In control engineering, the above dynamic equation is often cast as a set of first

order differential equations with time delays, by using a state vector y=[x x]",
as following

Y(O)=Ay(O)+ A y(t-1)+ A y(1-1:)+ f (1), (1.1.5)

0 1 0 0 0 0 0
- = = - : 1.1.6
AO{—k/m —c/m]’ A"[ﬁ/m 0}’ A2‘[o V/m]’ 4 (t)_[f(t)} (1.16)

A more general form of Equation (1.1.5) reads

where

HO=) Ayt-t )+ f(1), peR", (1.1.7)

k=0

wheren0<7 <<z are'a'set'of time'delays. This is a widely used model for linear
systems in control engineering.
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An example of Eq. (1.1.7) is the truncated modal equation of a tall structure
equipped with active tendon, which is a new technique in structural control. As
shown in (Zhang et al. 1993), the whole system can be modeled as a three-
dimensional linear delay differential equation

n(O)=y,(),
P2 () ==y ()-2w,y,([)-y;(O)+ [ (), (1.1.8)
Vi) =—ay;()+ By, (t-1)+yy,(t-72).

The first two differential equations in Eq. (1.1.8) govern the fundamental modal
state of tall structure, while the third one governs the output of hydraulic actuator
according to the modal state feedback. Here, y, and y, represent the fundamental
modal displacement and velocity, y; the control force, f(f) the external force,
,>0 the fundamental natural frequency, >0 the corresponding damping ratio,
a>0 the time constant of hydraulic actuator, £ and y the feedback gains of mo-
dal displacement and modal velocity, 7,>0 and 7,>0 the time delays caused
mainly by the hydraulic actuator, respectively. Equation (1.1.8) can be written in
the form of Eq. (1.1.7) with

0 1 0 000 000 0
A,=| -0} 2w, 1|, 4,=/0 00| 4,=/00 0|, f(O=|f®]| (1.1.9)
0 0 -a £ 00 0y 0 0

(2) Nonlinear dynamic systems

In practice, a great number of dynamic models of controlled mechanical systems
are nonlinear by nature. The nonlinearity may come from the flexible components
undergoing large deformation, the backlash and the friction in the interface of two
components, the saturation of controllers and actuators, and so on.

A simple, but widely used model for the nonlinear dynamic systems with de-
layed state feedback is the Duffing oscillator governed by

mx()+cx(t)+hx(t)+ pkx () =tix(t—7)+Vx(t—7)+ f, coswt , (1.1.10)

where p#0 characterizes the cubic nonlinearity, while other system parameters
are similar to those in Eq. (1.1.4). This model, for instance, can be used to de-
scribe the single mode dynamics of a slender beam or a flexible plate with a pie-
zoelectric pad equipped for vibration reduction when the beam or the plate under-
goes a large deflection.
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Because of the complexity of nonlinear dynamic analysis, the mathematical
model of a nonlinear system should be as simple as possible. Hence, Eq. (1.1.10)
is often re-scaled before the analysis. For example, the time ¢ and the time delay
7 in Eq. (1.1.10) can be replaced, owing to m>0 and k>0, with the dimension-

| o
m m

such that Equation (1.1.10) is recast as

less ones

$()+28 %(O+x(0)+ 10 (O)=ux(t—7)+vi(t— 1)+ feos At , (1.1.12)

where the dot represents the derivative with respect to the new time ¢, whereas all
the parameters in Eq. (1.1.12) are also scaled to dimensionless ones as following

_fo _.|m =z _
g= 2\/— ==, l—w\[]:, U= v_m. (1.1.13)

Compared with Eq. (1.1.10), the number of system parameters in Eq. (1.1.12) has

<1

been decreased by two.

In vehicle engineering, the active control of vibration has found its application
since 1980's when a number of contradictive requirements of performance, such as
the ride comfort, suspension space and contact force of tires, should be met
simultaneously for various road profiles. The active suspension compensates the
motion of vehicle body through the use of hydraulic actuators and controllers. Ac-
cording to the design of load distribution, it is reasonable to look at the so-called
quarter car model for the vertical vibration of active suspensions as shown in Fig.
1.1.2. In this model, the nonlinearity of tires is often taken into account so as to
describe the system dynamics properly.

Fig. 1.1.2. A quatter car model of active suspension
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The equation of motion of the quarter car model yields

{mbf(t)ﬂs [x()-y(O)+k, [x()-y(1)]+g =0,

s s (1.1.14)
m, J(O)+¢, [y(O)—x(O]+k, [y ()= xO)]+ 1, (p(1)-2(1))-g =0,

where x represents the vertical displacement of vehicle body with mass m,, y
the vertical displacement of the unsprung mass m,, z the road disturbance, &, 20
and ¢, >0 the coefficients of stiffness and damping of the suspension, f;(-) the
restoring force of tire, which is a nonlinear function in the relative displacement
y-z.

The simplest control strategy for active suspensions is based on the concept of
sky-hook damper. That is, the control force should like the restoring force of a
linear dashpot between the vehicle body and an imagined fixed frame such that

g=vi(t-1), (1.1.15)

where ¥ is the feedback gain and 7 is the time delay owing to the controller and
the hydraulic actuator. In some studies, Eq. (1.1.15) has been generalized to

g=ux(t—7)+Vi(t-7). (1.1.16)

Substituting Eq. (1.1.15) or Eq. (1.1.16) into Eq. (1.1.14) gives a set of nonlinear
delay differential equations.

As done in (Palkovics and Venhovens 1992), the quarter car model of active
suspension can be further simplified to a forced Duffing oscillator if the unsprung
mass, compared with the mass of vehicle body, is relatively small enough and can
be neglected. In addition, the number of system parameters can also be reduced by
re-scaling procedure.

An important feature of nonlinear dynamical systems is their possible chaotic
outputs under deterministic inputs. To remove or utilize the chaotic motions of
nonlinear systems, many active control strategies have been developed. Among
them, the delayed linear feedback has proved itself a very powerful tool, see Sec-
tion 8.3. The nonlinear systems equipped with this control should be certainly
modeled by nonlinear delay differential equations.

1.1.2 Dynamic Systems with Operator's Retardation

If a dynamic system includes any interaction between a man and a machine, the
retardation of operator has to be taken into account in the dynamic analysis when
the time delay in retardation is not much shorter than the fundamental period of



6 1 Modeling of Delayed Dynamic Systems

machine. A well-known example is the steering dynamics of a vehicle at high
speed. To deal with this sort of problems in later chapters, the mathematical model
of a four-wheel-steering vehicle, or 4WS vehicle for short, is established here with
the time delay in driver's response taken into consideration.

The vehicle model shown in Fig. 1.1.3 includes a symmetric rigid body of mass
m with two identical front wheels and two identical rear wheels. It is moving at a
constant speed U. To study the steering dynamics of the vehicle moving at a con-
stant speed, only the lateral and yaw dynamic equations of vehicle should be con-
sidered, while the longitudinal dynamic equation can be neglected.

Fig. 1.1.3. A simple model for four-wheel-steering vehicles; a. vehicle in a fixed frame of
coordinates, b. zoom view of a front wheel

Let G denote the center of mass, where a coordinate frame fixed on the vehicle
body originates. The lateral velocity ¥ and the yaw angular velocity » of the ve-
hicle yield

{m(V+rU)=2Ff c0sS , +2F, cosd,, (1.1.17)

I,r=2aF,cosd,-2bF, cosd,,

where I, is the inertia moment of rotation of the vehicle body with respect to the
vertical axis z, a and b are the distances from G to the front and rear axles, &, and
o, are the steering angles applied on the front and rear wheels, F; and F, are the
lateral forces due to the contact between the tyre and the road surface at each front
and rear wheel. An interesting fact is that the dynamic equations of vehicle are
independent of the width of vehicle if the vehicle and the road are assumed to be
symmetric with respect to plane 4B.

The lateral contact force is a function of the physical properties of the tyre and
the corresponding side-slip angle a._or a, observed on the front wheel or rear
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wheel, respectively. These sideslip angles of wheels can be determined according
to the simple geometric relations shown in Fig. 1.1.3 as follows

V+ar (V—br

)—0,, a, =arctan )0, .

r

a , =arctan( (1.1.18)
The most popular tyre modet is the truncated Magic formula proposed in (Pacejka
1989). Here, the third order truncation of the formula is used

F,=—Ca,+Cya;, F,=-Da,+Dya;, (1.1.19)

where C,, C;, D, and D, are positive parameters.

Equations (1.1.17), (1.1.18) and (1.1.19) constitute a set of closed differential
equations in unknown variables ¥ and r to describe the lateral and yaw dynam-
ics of the four-wheel-steering vehicle in the case of open loop. That is, the steering
angles 6, and &, are regarded as the independent input of the vehicle and the
interaction of driver is not taken into account.

A popular control strategy is to steer the rear wheels on the basis of a pre-
determined function as below

5,=ksS ,+k,r . (1.1.20)

There are two versions of this control strategy. One is the following linear strategy

— +LU2
Ci(a+b)

mb )
a+t———
D, (a+b)

ky= . k=0. (1.1.21)

r

It features that ks;——b/a<0 when U—0 and k;—aD,/bC,>0 when U—>+w.
The other version is the bilinear strategy with the coefficients given by

_ 2
koo Ciyg g 2aGmbD)mU?

D, 2DU

(1.1.22)

An important feature of the bilinear strategy is the constant steering ratio k;#1.

The interaction between the driver and the vehicle should be studied in the
fixed global frame of coordinates (x,y,i) as shown in Figl.1.4, where (x,y) rep-
resents G, the mass center of vehicle, in driving and i the heading angle of vehi-
cle. Obviously, the following relation holds

y=V cosy+Usiny,
{y yrosmy (1.123)

y=r.
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Y Degired path
L
Ye
Y
U L: ‘
A
Y
0 X

Fig. 1.1.4. The geometric relation in Eq. (1.1.24)

Many models have been proposed to describe the perceptual delay of the
driver, who senses the deviation from the desired path and steers the vehicle to re-
duce the deviation. The simplest model in (Nagai and Mitschke 1987) reads

P.(t+7,) =y, (r+r,,)—y(z)—§y'<t),
(1.1.24)

7,6,(+6,(N=K,,y.(t-1,).

Equation (1.1.24) describes the deviation from the desired path and the retard of
both driver and steering mechanism, respectively. As shown in Fig. 1.1.4, L repre-
sents the preview distance, y, the desired lateral displacement, y, the error be-
tween desired and actual lateral displacement, z,>0 the time delay of the steering
mechanism, 7,>0 the preview time of the driver, r,>0 the time delay of the
driver, K,, the steering gain, respectively.

Substituting the first equation in Eq. (1.1.24) into the second one gives a linear
delay differential equation in steering angle o,

7.6, (’)+5f(t)=Km[yd(t—rd)—y(t—r)—éy'(t—r)], (1.1.25)

where 7=7,+7,>0 represents the total time delay of driver’s retardation in the
vehicle-driver system.

In summary, the motion of the four-wheel-steering vehicle-driver system yields
a set of non-autonomous delay differential equations in five unknown state vari-
ables (V,r,y,w,0,) as following
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mV=—m Ur+2F;(V,r,0,)cos6,+2F,(V,r,6,)cos(ks0  +k,r),
Lr=2aF;(Vr,6,)cos6 ;~2bF,(V,r,6,)cos(k;6,+k,r),
y=Vcosy+Usiny, (1.1.26)

y=r,

3, :—i—&[ y(t—r)+-lL7V(t—z')cosx//(t—r)+Lsiny/(t—r)]+ 1),

5 §

where F,(V,r,6,) and F,(V,r,6;) can be determined from Egs. (1.1.18),
(1.1.19) and (1.1.20), while

v (t)E&yd (t-74) (1.1.27)

s

is regarded as an external excitation in the dynamic analysis.

1.2 Experimental Modeling

An important task in experimental modeling of delayed dynamic systems is to de-
termine the time delays. Compared with the coefficients of inertial, stiffness and
damping, as well as the feedback gains, the time delays should be regarded as the
special system parameters in experimental modeling. Even for a linear, time in-
variant, delayed dynamic system, the identification of time delays from experi-
mental data is always a tough problem of nonlinear parametric estimations, and
hence, very sensitive to the noise in the measurements.

Most previous publications only dealt with the time delays in the input of a
system. See, for example, (Liang and Christensen 1976), (Elnaggar et al. 1989),
and (Ferretti et al. 1991, 1994). These studies were confined to the case when the
ratio of time delay to be identified and sampling interval is an integer. To increase
the accuracy of estimated time delays, the sampling interval should be short
enough. However, the excessively short sampling intervals may produce the ill-
conditioned problems in identification. Only a few studies were made to identify
the feedback time delays, mainly the short time delays in linear systems. For ex-
ample, (Tuch et al. 1994) studied the experimental modeling of a linear, time in-
variant'systemrwithrshorttime delaysaThis section will be devoted to the identifi-
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cation of time delays of both linear and nonlinear delayed systems, as well as the
identifiability of time delays.

1.2.1 Identification of Short Time Delays in Linear Systems
(1) Approach based on frequency response function

The frequency response function of a linear, time invariant system involves a
number of delay induced exponential functions, each of which can be approximat-
ed by a truncated Taylor expansion or a rational fraction, such as the Pad¢ ap-
proximation in (Xu 1990). Hence, the frequency response function of the original
system with time delays can be first approximated as the frequency response
function of a delay free system of extended order, then the system parameters and
time delays can be extracted.

To elucidate the above idea as simple as possible, we consider a linear delay
system of single degree of freedom governed by Eq. (1.1.4). By performing the
Fourier transform on both sides of Eq. (1.1.4), we have the frequency response
function of system

1
k+ico-ma* -ue

H(w,7,7,)= (1.2.1)

—iwr) -iwry

—ivae

where the conditions u<k and v<c are required for the stability of system free of
time delays. Substituting the Euler formula for the exponential functions above
yields

1

H(w,7,,7,)= - , (1.2.2)
U a(w,1,,1,)-mo’ +ib(o,7,,7,)
where
a(w,7,,7,)=k—uUcoS@OT, —vOsinwr,, (12.3)
b(w,7,,7,)=co+usin@r, ~vwcoswr,. o

If the time delays are short enough, the frequency range of concern yields the
conditions O<wr,<<1 and O<wr,<<l. In this case, the truncated Taylor expan-
sion of Eq. (1.2.3) is
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1 1 1
a(w,t, ,2'2)=k—u(l—za)zz'l2 +§w4rl4 +)—va (o, —gafr; +ee0)
a)4

6

b(w,,,7,)=co+u(wr, —%afrf +ee -)—va)(l—%a)zrf +%a)473 )

u u
=k—u+a)2(51'l2 —vz,)- (er %79 SRR

(1.2.4)

»°
24

3
@’ u u
=w(ctur, —v)—T(grf —vzl)+ (grf —VTy )+

Substituting the above equation into Eq. (1.2.2) gives an approximation of fre-

quency response function

1
H.r,7:)= , 125
(@) ay+(iw)a, +(iw)’a, +({iw)’ a;+- (1.2.5)
where

@y =k, (1.2.62)
a,=c+ut,—v, (1.2.6b)

U , 2.

a,=Em——17; +VT2,
2 (1.2.6¢)
U 3V 5

BT T (1.2.6)

In practice, the parameters m, ¢ and k can first be extracted from a test of
open-loop system. Then, the frequency response function of the closed-loop sys-
tem is measured and used to fit Eq. (1.2.5) by using the technique of orthogonal
polynomials so that the coefficients a,, r=0,1,2,3 are extracted. Finally, the pa-
rameters u,v,7,,7, can be determined from Eq. (1.2.6) as following.

The first two equations in Eq. (1.2.6) give

u=k-a,, (1.2.7)
v=c+(k—ay)r,—q,. (1.2.8)

Substituting these two equation into Eq. (1.2.6¢) yields

7,= L (a,-m+ K002y (1.2.9)
c—a,+(k—ay)t, 2

By substituting Egs. (1.2.7), (1.2.8) and (1.2.9) into Eq. (1.2.6d), we have a poly-
nomial equation in the unknown 7,



12 1 Modeling of Delayed Dynamic Systems

1414(c—a,)z_3 12(a2—m)z_2 24a3r 24a,(c—a,)+12(a, —m)’
. " k-a, ' k-a, (k—a,)*

e, =0.(1.2.10)
The minimal positive root 7, of Eq. (1.2.10) can easily be determined by using
numerical techniques. Substituting 7, into Egs. (1.2.8) and (1.2.9) gives v and
7, , respectively.

The feasibility of this approach is subject to the following three conditions.
First, the time delays should satisfy O<wr, <<l and O<wr,<<! in the frequency
range of curve fitting, usually in the frequency range of a dominant resonance.
Second, the identification error of coefficients a,, »=0,1,2,3 should be so small
that Eq. (1.2.10) has positive real roots, or equivalently the following polynomial
equation of order 8 has at least a pair or real roots

M4(c—al)y6 12(a2—m)y4 24a, , 24a,(c-a)+12(a,-m)*
k-a, k-a, k-a, (k—a,)’

=0.(1.2.11)

The conditions for this fact can be derived according to the generalized Sturm
criterion presented in Subsection 3.2.4. Finally, the stability of a practical system
requires that the estimated coefficients yield the following inequalities
a,>0, r=0,1,2,3, see Subsection 5.3.1. If the system free of time delay is asymp-
totically stable, the first inequality holds. The second and the third inequalities al-
so hold true provided that the time delays are short enough. Owing to the Taylor
expansion, however, the last inequality a;>0 requires an extra condition

ut} —3vri>0. (1.2.12)

This is undoubtedly a shortcoming.
If the feedback gains u# and v are known, it is possible to simplify the above
procedure. From Eqgs. (1.2.6b) and (1.2.6¢), we have

a,+v—c
2 :—u—,
1.2.13
_2a, —m)+u112 _2u(a,-m)+(a +v—c)’ ( )
2 2v 2uv ‘

The corresponding identifiability condition for time delays is

{u(av1 +v—c)>0,

s (1.2.14)
w2u(a, —m)+(a,+v-c)”]>0.

If the-feedbacksgains-are;unknewngbut=z, =7, or ;=0 (or 7,=0) holds true, the
time delays can be determined from the first three equations in Eq. (1.2.6).
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Finally, great care should be taken because this approach based on the truncated
Taylor expansion with respect to short time delays has a number of shortcomings.
First, the delay free model of extended orders may not be equivalent to the origi-
nal system with time delays. The extra condition in Eq. (1.2.12) is an example.
Second, the number of parameters to be identified increases with an increase of
system order. This gives rise to the difficulty of both parametric identification and
extraction of time delays from the identified parameters.

(2) Approach based on modal parameters

Given the feedback gains, time delays can also be extracted from the modal
parameters of closed-loop system. For this purpose, let a;=0 in Eq. (1.2.5). Then,
the following natural frequency and damping ratio are defined for the system
having the feedback free of time delays and the system with delayed feedback re-
spectively

m (1.2.15)

A (1.2.16)

é’: =
2\/(m—%2'12 +vz, )(k—u)

Equation (1.2.16) can be rewritten as

4m = 2m = o, (12.17)

_1-1 _LTI +(.é;— a_)" ):0 . (1218)
4m c—v § o,

Solving this'equation forthe:minimal'positive root 7, and substituting 7, into Eq.
(1.2.17), we obtain r, .
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This approach has less accuracy than the approach based on the frequency re-
sponse function since the condition a;=0 is imposed. However, it enables one to
gain an insight into the effect of time delays on the system dynamics.

1.2.2 Identification of Arbitrary Time Delays in Nonlinear Systems

Consider an n-dimensional nonlinear system with delayed feedback
Mx(1)= f (x(2),%(1),x(t—7,),%(1-7,),p) , (1.2.19)

where MeR™ is the mass matrix, xeR" the vector of generalized displacement,
Sf€R” the vector of generalized force, 7, and 7, the time delays in the displace-
ment and velocity feedback, peR’ the vector composed of / parameters to be
identified. If the mass matrix M , the parametric vector p, and the time delays 7,
and 7, are replaced with the identified results M, p, # and #,, the residual er-
ror vector of Eq. (1.2.19) reads

e=M5(t)- f(x(1),%(1),x(t-%,),%(1—%,), D) . (1.2.20)

To minimize the residual error, it is necessary to know the derivatives of general-
ized displacement x. In order to avoid the numerical differentiation or integra-
tion, the r-th order derivative filter L,(D) can be introduced to obtain the ap-
proximate displacement vector x,, the corresponding velocity vector X, and
acceleration vector X, , see (Zhang 2002). Thus, the residual error vector can be
written as

e, =M)’éf @)~ f(x, ()% (t),x ;(t=11), % (t—7,),P) - (1.2.21)

If an objective function is defined as

J=Yele, (1.2.22)
J

where e is the residual error vector at the moment ¢=¢,, the parametric identifi-
cation can be regarded as a problem of minimization for M, p, %7 and 7, ina
given region of parametric space. This is a problem of global optimization with
possible local optimizations.

Among the approaches to the global optimization, the Genetic Algorithms, of-
ten abbreviated as GA, have received great attention since 1980's because of their
advantages superior in numbers. The genetic algorithms are based on the mecha-
nism of natural selection and evolution. They combine the principle of survival of
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the fittest individual among population with a structured and randomized informa-
tion exchange to form a search algorithm with some of the innovative flair of hu-
man search.

The genetic algorithm starts from a set of random individuals of population and
proceeds repeatedly from generation to generation through three basic genetic op-
erators, i.e., reproduction, crossover and mutation, so that the quality of population
is optimized step by step. Figure 1.2.1 shows the diagram of a typical genetic al-
gorithm. The basic element processed by a genetic algorithm is the string formed
by catenating sub-strings, each of which is the binary coding of a parameter. That
is, each string represents a parameter. In what follows, the three basic genetic op-
erators are outlined.

I Set initial population I

)\_)| Evaluate fitness numbers |

¥

Reproduction
(Various principles of selection)

v

Crossover (Uniform crossover /
Non-uniform crossover / Fittest individual kept)

Y

Mutation (Uniform mutation /
Non-uniform mutation / Boundary mutation)

y I

Yes

[ Output the optimal individual |

Fig. 1.2.1. A typical genetic algorithm

Reproduction is based on the principle of survival of the fittest. That is, the fit-
test individuals in the population should be first selected to reproduce their off-
spring. For this purpose, a positive number E, called the fitness number, is as-
signed to individual ; in the population for all j, where a larger fitness number
implies better fit of individual. In order to select the fittest individuals as the first
choice, the probability p._in selection is usually defined to be proportional to the
fitness, say,
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P (1.2.23)

This way, two individuals with the largest probability will be first selected as a
couple to reproduce their offspring.

Crossover is used to generate new individuals so that a new point in the
parametric set is searched. In practice, two techniques of crossover are often used.
One is the simple crossover, which exchanges the partial genes of two select
chromosomes. And the other is the algorithm crossover. That is, the linear combi-
nation of two select chromosomes. The specific operator is to replace the parame-
ters a and b of two individuals with &' and b', satisfying a+b=a'+b". Nor-
mally, the individual parameters of offspring yield

{a’:(l—a)bﬂm,

(1.2.24)
b'=(1-ar)a+ab,

where a€(0, 1) is a random parameter. In practice, & can be set as a constant or
a variable. The two cases correspond to the uniform crossover and the non-
uniform crossover, respectively. To avoid missing the optimal individual and to
increase the convergence, a new crossover operator is suggested as follows.
Crossover the two parameters of parents, and then keep one of the parents fitter
than the offspring, as well as the fitter individual of offspring. This operator can
greatly speed up the convergence, but likely falls into a local optimization. Such a
shortcoming can be removed by increasing the mutation probability.

The purpose of mutation is to introduce the genetic diversity into the population
so that the almost uniform population, or the individuals of small fitness, undergo-
es a change. The mutation makes each new generation keep fresh individuals and
avoid iteration stopping. The mutation may be uniform or non-uniform, too. The
non-uniform mutation is as following. Take a random variable N, from the set
{0,1} and let

(1.2.25)

, latéta,, —a), N =0,
a-o(ta-a,,), N, =l

where 8(t,y)=[z(1-t/T)]’y, T is the maximal number of generations, z a ran-
dom variable on [0, 1], b a system parameter, representing the extent of non-
uniformity. The value range of &(¢,y) is [0, ], and &(¢,y)—>0 when t—>T .
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To implement the genetic algorithm to minimize J in Eq. (1.2.22), a fitness
Junction is introduced as following

E=max(N-J), (1.2.26)

where N is a sufficiently large positive number so that £>0 holds true during
the parametric identification.

Compared with other optimization algorithms, the genetic algorithm does not
depend on any gradient information of the objective function, and hence, meets
the requirement of optimization of non-smooth and even discontinuous objective
functions. The more important feature of a genetic algorithm is its ability of global
optimization, because the genetic algorithm searches the best individual among
the population, rather than a part of individuals, and emphasizes the information
exchange among all individuals of population.

The efficacy and efficiency of a genetic algorithm mainly depends on the fol-
lowing choices. That is, the choice of reproduction, crossover and mutation, the
choice of algorithm parameters such as the population probability, crossover prob-
ability and mutation probability, and the choice of fitness function. In the follow-
ing two examples, several kinds of crossover and mutation were simultaneously
used so as to improve the efficiency of genetic algorithm.

Example 1.2.1 Consider the problem of parametric identification of a linear
delay system of single degree of freedom governed by

mi(t)+cx(t)+he(t)=ux(t—7)+vi(t—1)+ £(1) (12.27)

where m=1.0, ¢=0.2, £=1.0, ©u=0.5, v=0.1 and 7=0.025. In the numerical
simulation of system response, the excitation f(f) was taken as a chirp sinusoidal
excitation of unit amplitude, a very popular excitation for the parametric identifi-
cation of linear dynamic systems, within the frequency range 0.01-10Hz. The
system response was sampled at the rate of 0.02s. In the parametric identification,
the number of individuals in original population was chosen as 80, and the muta-
tion probability as 0.025. The crossover was taken as the operator of keeping the
fittest individuals, and the mutation as the non-uniform operator.

As the first step, the open-loop test was made to identify the parameters m, ¢
and k. Then, the estimated m, ¢ and k were substituted into the closed-loop
model to identify the feedback gains and time delay. The convergence of identifi-
cation with respect to the number of iterations is shown in Figs. 1.2.2 and 1.2.3 re-
spectively for different noise levels of measurement.
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Fig. 1.2.2. Estimated feedback gains and time delay of a linear system when the measure-
ment was free of noise
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Fig. 1.2.3. Estimated feedback gains and time delay of a linear system when the measure-
ment was contaminated by 5% noise

Table 1.2.1. Identification results of a linear dynamic system with delayed state feedback
under different noise levels of measurement

Parameters m k c u v T

Searchrange [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0, 0.5]
Exact value 1.0 1.0 0.2 0.5 0.1 0.025

Identification 100006  1.00009  0.19997  0.50002  0.09983  0.0247
free of noise

Identification  (.006 0.009 0.015 0.004 0.17 1.12
error (%)

Identification  1,00590  1.00605  0.19605  0.50655  0.10045  0.03836
at 5% noise

Identification .59 0.61 1.98 1.31 0.45 53.44
error (%)
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As shown in Table 1.2.1 and Fig. 1.2.2, all the identified parameters ap-
proached the exact values if the sampled data were free of measurement noise.
However, the identified time delay in Table 1.2.1 and Fig. 1.2.3 greatly deviated
from the exact value and even had the relative error of 53.44% when only 5%
white noise was added to the sampled data. The next example will show how to
improve the applicability of the approach in the noisy case.

Example 1.2.2 Consider a forced Duffing oscillator with linear delayed state
feedback. As discussed in Subsection 1.1.1, the equation of motion of the system
is governed by

F(0)+28(0)+ x(t) + 106 () =ux(t =) +vi(t—1)+ £ (D) , (1.2.28)

where £=0.05, =0.05, u=0.1, v=-0.1 and 7=0.786. To get the system re-
sponse, which well represents the nonlinear behavior of system under various in-
tensity of excitation, the excitation of white noise with variance 0.1 was used in
the numerical simulation of system response. The displacements of open-loop
system and closed-loop system were sampled respectively at the rate of 0.01s. The
open-loop parameters ¢ and u were first identified and then substituted into the
closed-loop model. Afterwards, «,v and 7 were identified.

Table 1.2.2. Identification results of a forced Duffing oscillator with delayed state feedback
under different noise levels of measurement

Parameter ¢ i u v T
Search range [0, 1] [0, 1] [0, 1] [-1, 0] [0, 5]
Exact value 0.05 0.05 0.1 -0.1 0.786
Identification (.05 0.05 0.09942 -0.1006 0.79997
free of noise

Identification (.00 0.00 0.58 0.60 1.78
error (%)

Identification  ¢.051161 0.04956  0.11236 -0.09152 0.901977
at 5% noise

Identification 3 37 0.88 12.36 8.48 14.75
error

Identification (04826 0.04889  0.11518 -0.08950 0.92899

at 10% noise

Identification 3 48 2.22 15.18 10.50 18.19
CIror
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Fig. 1.2.4. Estimated parameters for a forced Duffing oscillator with delayed state feedback
when the measurements were free of noise and contaminated by 5% noise, respectively

Similar to Example 1.2.1, the number of individuals in a population was chosen
as 80, the crossover probability as 0.15, and the mutation probability as 0.075.
Three case studies were made for the measurements without noise, with 5% and
10% white noise, respectively. To improve the identification process, several op-
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erators of crossover and mutation, such as the algorithm crossover, uniform and
non-uniform mutations, were used. Table 1.2.2 gives the identified parameters for
different cases. Figure 1.2.4 shows the convergence procedure of parametric iden-
tification with an increase of iteration numbers. Obviously, the combination of
crossover and mutation greatly improved the accuracy of identified parameters.
For instance, the relative error of identified time delay was reduced from 53.44%
in Example 1.2.1 to 14.75% when 5% noise was added into sampled data. The re-
lative error of time delay was decreased to 18.19%, an acceptable percentage in
engineering, even though the sampled data were contaminated by 10% white
noise.

1.2.3 Discussions on Identifiability of Time Delays

As seen in previous subsections, it is not easy to extract the feedback time delays
from the experimental data for a dynamic system, even for a linear dynamic sys-
tem. A great number of failures in the identification of time delays urge one won-
der whether the time delays in a dynamic system can be identified or not. In this
subsection, a brief discussion will be made mainly on the identifiability of time
delays of a linear dynamic system.

Consider again the frequency response function of a linear delay system of sin-
gle degree of freedom given by Eq. (1.2.5) as following

1
H(w,r,,7,)= R 1.2.29
(@,7,,7,) a(®,7,,7,)-me’ +ib(w,r,,7,) ( )
where
a(w,t,,r,)=k—-ucoswr, —vosinwr,, (12.30)
Ww,r,,7,)=co+usiner, —vocosor,. o

Obviously, both a(w,r,,7,) and b(w,7,,7,) are real functions in the time delays
7, and 7,, and has the same period 2m/w . Hence, for any positive integers p
and g, there exists the relation

2pn 2gm

a(o,n £ ,T, i—w )=a(w,1,,7,),

(1.2.31)

2 2

b+ + X b 1 1),
w w

A specific case.is
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2
a(o, 2p1r qmn

b(w;

)_( 00)’
——)=b(,0,0).

2pm 2th (1.2.32)
W

Equation (1.2.31) implies that the identified time delays 7, and 7, may differ
from the actual time delays 7, and 7, by 2pn/@ and 2gn/@ if only the har-
monic excitation of frequency @ is used in the test. For the system with identical
time delays r,=t,, the identified results may yield #,—7,=2(p—q)n/w+0. Equa-
tion (1.2.32) indicates that two distinct time delays 7,=2pn/w and 7,=2qn/®
may even be identified for the system that does not have any time delays at all. As
a result, it is impossible to extract the time delays properly from the response of
system subject to a harmonic excitation of fixed frequency.

Now consider two distinct time delays 7, and 7, , as well as the time delays 7,
and 7, identified from the experiment. Denote the corresponding frequency re-
sponse functions by H(w,r,,7,) and H(w,7,,7,), respectively. If they both are
identical, Egs. (1.2.29) and (1.2.30) lead to

a(w9{.1 ’fZ )—a(C(),Tl T )

=u(coswt, —coswt, )+va(sinwr, —sinwt, )=0,

b(w,z’:pfz)_b(w,fl ,Tz) (12.33)

=u(sinw?, —sinwz, )-vw(coswt, —cos@T, )=0.

Equation (1.2.33) can be regarded as a set of linear equations in unknowns u and
vw . The existence of non-zero solution of Eq. (1.2.33) is equivalent to the fol-
lowing necessary and sufficient condition

(coswt, —coswt, }(cosmT, —COSWT,)

(1.2.34)
+(sinwt, —sinw?, (sinwr, —sinwt, )=0.
After simple manipulations on triangle functions, we atrive at
Sin a)(le—Tl ) Sin w(TZ —7; )CCS a)[(Tl +T1 )2—(12 +T2 )] =0 . (1 235)

There follows the solution of Eq. (1.2.35)

2r+1
pon T 220 (Gar)— (2 40)=+ DT (1236)
w [0 w

where p and g are positive integers, r the non-negative integer.
The first two solutions in Eq. (1.2:36) indicate again that the identified time
delays 7, and 7, may differ from the actual time delays r, and 7, by 2pn/w
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and 2gn/@ . The third solution implies that the identified results may be any pair
of 7, and 7,, which yields the last equation of Eq. (1.2.36).

Now, we look at the comparison of frequency response functions H(w,7,,7,)
and H(w,?,,7,) , as well as the amplitude of impedance difference defined as

A(a))s\/[a(a),f,,fz)—a(a),r, ) Hb(w,2,,5,)-b(w,7,,0,)]F . (1.2.37)

Figure 1.2.5 shows the amplitudes of H(®,0,0) and H(w,4n,6m), and the am-
plitude of corresponding impedance difference. It is obvious that the two frequen-
cy functions are equal at the common values ®w=1,23,--- for the frequency series
w=2pn/|t,-7|=p/2, p=1,2,3,-- and @=2qm/|t,~7,|=q/3, q=1,2,3,-. Thus, it
is impossible to identify whether or not the system has any time delays from the
measured frequency response function at those frequencies.

6L

3 A — H(w,1,0)

3 4}

= ----H(w,l1+47n,41)

a 2L

g —

< 9 ; L ) N ,
00 05 1.0 1.5 20 2.5 3.0 3.5 4.0
1.01

Sost

<

0'?)‘0 05 1.0 1.5 20 25 3.0 35 4.0
w

Fig. 1.2.5. Comparison of the frequency response functions H(®,0,0) and H(w,4n,67),
together with the amplitude of A(w)
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Fig. 1.2.6. Comparison of the frequency response functions H(w,1,0) and H(w,1+4m,4m),
together with the amplitude of A(w)
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Fig. 1.2.7. Comparison of the frequency response functions H(w,0,0) ‘and H(®,10,10),
together with the amplitude of A(w)
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Fig. 1.2.8. Comparison of the frequency response functions H(®,0,0) and H(®,50,50),
together with the amplitude of A(w)

Similarly, the frequency response functions H(®,1,0) and H(w,l+4n,4m) in
Fig. 1.2.6 are the same when w=p/2, p=1,2,3,---. This case is also true if the time
delays are arbitrary real numbers. In Fig. 1.2.7, H(®,0,0) and H(®,10,10) are
identical when w=pn/5, p=1,2,3,.--, and so are H(@,0,0) and H(®,50,50) at
w=pr/25, p=1,23,--- in Fig. 1.2.8.

As analyzed above, the identified time delays 7, and 7, may differ from the
actual time delays 7, and 7, by 2pn/w and 2gn/w, where p and g are two
integers. If the time delays to be identified are very short, it is easy to exclude the
misidentified time delays. However, the dynamics of a system with short time de-
lays is often quite close to the dynamics of a delay free system. In this case, the
identification of short fime delays may fail if the experimental data are contami-
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nated by measurement noise. In what follows, the identifiability of short time de-

lays is discussed for the second approach in Subsection 1.2.1.
From Eqgs. (1.2.14) and (1.2.15), the sensitivities of modal parameters of
closed-loop system with respect to the time delays can be derived
dw dw, @y 8 Clu ¥ Ly

n:o’ n: 2 b .
or, dr, 2m 0Ot c-v 0r, 2m

(1.2.38)

As these sensitivities depend on the modal parameters of system without time de-
lay, it is possible to determine what modal parameter is the best for the identifica-
tion of time delays. For example, it is more difficult to identify z, than r, from
the natural frequency w, . If the condition 2mu>v(c—v) holds, however, it may
be easier to identify 7, than 7, from the estimated damping ratio.

Example 1.2.3 Consider a linear delay system governed by Eq. (1.2.1) with
following parameters

m=1.0, ¢=0.2, k=10, u=0.1, v=0.1, 7,=0.2, 7,=0.1. (1.2.39)

The numerical simulation shows that if the input and output measurements of
system were free of noise, the identified parameters coincided with the exact
parameters at the first three digits. However, if the white noise of 1~ 5% was
added to the sampled measurements, the accuracy of identified parameters became
quite poor. From the experience of using the curve fitting technique of orthogonal
polynomials, the accuracy of parameters a, and a, is relatively high since they
both are related to the natural frequency. However, it is hard to identify an accu-
rate @, because it is associated with the modal damping. As a small parameter, the
identified result of a, does not have high accuracy, either.

[
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~0—¢,

o
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Relative errors of @, and a, (%)

Fig. 1.2.9. Relative errors of identified parameters
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In Fig. 1.2.9, the effect of estimation errors of a, and a; on the accuracy of
identified time delays is given. The figure shows that only the fitting error of
about 5% may give rise to the identification error of 80~90%. This indicates once
more that it is indeed a tough and open problem to identify the time delays of a
practical system from experimental data.

The identifiability of time delays from any nonlinear system is undoubtedly a
tough problem, and can usually be discussed in time domain. To have a brief idea
about the identifiability problem in time domain, consider the delayed state feed-
back

gO)=ux(t—1,)+vx(t—r1,). (1.2.40)

Applying the Lagrange mean value theorem to Eq. (1.2.40) yields
g(O)=u[x(t)-1,x(t-0r))]+vi(t-1,), 0<6()<I1. (1.2.41)
Even though 6(r) here is not a constant, the experimental data may offer great
probability of z,~6(f)7, such that
gO=ux(t)+(v—ur)x(t—-1,) . (1.2.42)
If this is the case, the estimated results become
u=u, v=v-ur,, =0, 7,~T, (1.2.43)
and totally deviate from the real values.
In general, the identifiability of dynamic systems with feedback time delays is
still an open problem no matter whether the systems are linear or not. Neverthe-

less, it is better to keep the problem in mind when estimating the time delays from
the experimental data or using the estimated time delays in system modeling.



2 Fundamentals of Delay Differential Equations

This chapter serves as a brief review of some theoretical results of delay differen-
tial equations in the form

x(O)=f(t,x@),x(t—7,),x(t—7,), ", x(t—7,)), x€R", (2.0.1)

where 0<r <7,---<r, represent the time delays. The time delays are assumed to
be constants hereinafter for simplicity, though it may be more reasonable, from the
viewpoint of practice, to regard them as the functions in time #.

In addition, the time delays in a differential equation may appear in terms of the
highest order derivative, for example,

#(t)=ax(t)+bi(t-7), xeR. (2.0.2)

If this is the case, the delay differential equation is referred to as the neutral type,
whereas Eq. (2.0.1) is called the retarded type. The delay differential equations of
neutral type may behave quite different from those of retarded type. For mechani-
cal systems, the displacement feedback and the velocity feedback are more popu-
lar than the acceleration feedback. Hence, the controlled mechanical systems with
feedback time delays are usually modeled as Eq. (2.0.1), and the delay differential
equations of neutral type will not be touched with in this book. As a result, the
terminology “delay differential equation” used hereafter implies the delay differ-

ential equation of retarded type unless any further explanation is given.

For Eq. (2.0.1), the concepts of linear and nonlinear systems, autonomous and
non-autonomous systems, orders or dimensions of systems, and so on will be used
without special definition. What should be emphasized is that x(¢) is not superior

to any x(t-7;), j=1,2,...,/ in Eq. (2.0.1). They should be equally dealt with.

2.1 Initial Value Problems

For a dynamic system described by an ordinary differential equation, the state of
system at any time ¢ can be traced from an initial state at time ¢, if the dynamic
equation of system is given: However, this is not the case for any system governed
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by a delay differential equation. To understand this fact, we consider the linear
system of single degree of freedom with delayed state feedback given by Eq.
(1.1.4). In the case of identical time delays, the initial value problem correspond-
ing to Eq. (1.1.4) reads

{mx(t)+cx(t)+/oc(t)=ux(t—f)+5c(’-f)+f (. 121y, 2.1.1)

x(=¢g(t), ¥O)=4@), telty—7, t,].

That is, the initial state of system should be given by a continuous function
#(¢) and its continuous derivative @(z) on the interval [t,—7, ,] in order to de-
termine the state of system when £>¢; .

Because 7, is assumed to be the longest time delay in Eq. (2.0.1), the initial
value problem of Eq. (2.0.1) should be stated as

{X(t)=f(t,x(t),x(t—r,),x(t—rz),---,x(t—r,)), xeR", t>t,,

(2.1.2)
x()=@(1), te[t,—7,,t,],

where ¢(1)eC=C({t,-1,, t,],R") and C represents the Banach space of continu-
ous functions mapping [¢,—7;, £,] into R". For each initial function geC, it is
equipped with the norm

l¢l.= sup ]l|¢(s), (2.1.3)

selty=1,, 1y
where ||| is an arbitrary norm in R”. It is obvious that the space of initial state of
Eq. (2.1.2) is infinite dimensional. This is one of the most important features of
delay differential equations. When the dependence of x(z) on the initial function
@(t) ahead of the moment ¢=f, needs to be emphasized, the symbol x(z.t,.9)
will be used for x(¢) hereinafter.

2.1.1 Existence and Uniqueness of Solution

When an initial value problem of delay differential equation is to be solved, the
most natural strategy is the method of step-by-step. For instance, it is possible to
find out the solution x(¢) of Eq. (2.1.2) on [¢,, #,+7;], where the right-hand side

is in terms of given states x(¢—7,;)=@(¢—7;), j=1,2,...,[ . Then, Eq. (2.1.2) can be
solved for x(¢) over [t,+7,, t,+27,], where the right-hand side is in terms of

known solution found in the first step. Repeating this routine recurrently, it is fea-
sible to determine x(¢) up to any desired interval.
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Example 2.1.1 Solve the initial value problem of a scalar delay differential
equation

(2.1.4)

#(t)=—x(t-1), 120,
x(t)=t, te[-1, 0].

On the interval [0, 1], Eq. (2.1.4) becomes x(¢)=—(¢—1). Solving this ordinary
differential equation gives a general solution x(¢#)=—(t—1)*/2+¢,, where ¢,=1/2
can be determined from the condition ¢(0)=0. Hence, the solution of Eq. (2.1.4)
on interval [0, 1] is x(¢)=—(t=1)?/2+1/2.

On the interval [1, 2], Eq. (2.1.4) becomes x(¢)=(1—2)*/2-1/2 after x(z-1) is
substituted. By integrating this equation under the condition x(1)=1/2, we obtain
x(t)=(t-2)*/31-t/2+(1+1/3) .

Repeating this routine recurrently gives the solution of Eq. (2.1.4)

t, te[-1,0],
—(t-1)*/2+1/2, t€[0,1],

x(1)= @2.1.5)
(t—2)*13t/2+(1+1/3), t]1,2),

The corresponding time history is shown in Fig. 2.1.1.
0.5}
x 0.0 /\\//\v

-0.5¢

-1.0 . . L
-5 0 5 ; 10 15 20

Fig. 2.1.1. Time history of solution of Eq. (2.1.4)

If multiple time delays are involved in a delay differential equation, the method
of step-by-step is still valid, but may become very complicated. The method of
step-by-step converts the initial value problem given by Eq. (2.1.2) into a series of
initial-value-problems.of ordinary.differential equations, which may be succes-
sively solved. Using the idea of studying the existence and uniqueness for ordi-
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nary differential equations leads to the corresponding conclusions for delay differ-
ential equations.

To briefly state the theorem of existence and uniqueness, consider Eq. (2.1.2)
when /=1 and rewrite it as

{x: F.x(0).x(t-7)), xeR", t>t,,
(2.1.6)

X(t)=¢(t), te[IO_T’ to],

where @(¢) is continuous on [¢,—7, f,]. In addition, for >¢, and d>0, we define
two sets for the statement of following theorem

J=[t, +0), D={xeR"

lf<d} . 2.1.7)

Theorem 2.1.1 Assume that

(@) f(t,x(6),x(¢t—7)) is continuous in JxD?;

() f(t.x(),x(t—71)) is of local Lipschitz with respect to x(¢) and x(¢-7),
namely, there is a constant L;>0 for G< JxD? such that for any (1,¢,,&,) and
(t,m,,n,) €G the following inequality holds

!lf(t,él,fz)—f(r,m,n2)|ISLGZI|| &-n)| (or <Lomage,n ). @18)

Then, there exists a constant A>0 or 4=+o0 such that Eq. (2.1.6) has a unique
continuous solution x(z,¢,,8) for te€[ty—7, t,+A4].

Proof For a given initial function ¢, we denote D ={y| |y—d|.<d,} and
Q=[t,, t,+AJxD}?, and choose 4>0 and d,e(0,d) such that 2cJxD?. Fur-
thermore, let x,(#) €D be a continuous function defined by

p@t), telty-7, 4],
X, ()= 2.1.9)
¢(t0)’ t>t0,
and then define x,(¢) for k=1 recurrently by
¢(t)a te[to =7, 10],
x, ()= (2.1.10)

$0)+ [ £ x06) 50 G=Nds, 151

If x,,(¢t) eD, M=sup Q" f || and d, E||¢(t0 )|| enable one to write
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bl < I+ [ 175, %01(9), % (s = oD
‘o (2.1.11)

<dy+Mlt—1t|<d, + MA.

Thus, x,(¢) €D holds if A<(d—d,)/2M . As a result, x,(t) €D holds for all
k>1.

Now, we can claim that x,(¢f) converges uniformly on [7,—7, t,+A4] as
k—+o0. In fact, for ¢€[t,, t,+A], we have

=5 OIS L | T (5) = xia (s =0) =45 = )l
(2.1.12)
<2L _[ 0 %, () = X (s ds,

where L is the Lipschitz constant of f(#,x(¢),x(t—7)) over (2. Because
x,(H)-x,,(t)=0 holds for all z€[z,—7, t,], the above inequality is true for all
te [ty—1, ty+A] . Using the inequality

1 (%, @)|SMt=1o|, te [ty—7, ty+A] (2.1.13)
gives

MQLY|t—1,|*

[l (£)—x =< T

, telto-1, to+A4] , k21.  (2.1.14)

This implies that x,(¢) converges to a function x(f)= x(t,7,,¢) uniformly on
[to—7, t,+A] as k—>+oo . Imposing k—+oo in both sides of Eq. (2.1.10) gives

¢, telty-7, 1),

x(1)= (2.1.15)

$(to)+ [ (5, %(5),x(s=))ds, 1> 1y,

To prove the uniqueness, it is assumed on contrary that there is another solution
y()= y(t,t,,9) of Eq. (2.1.6) on the interval [¢,—7, ty+A] with 4>0. As done
in the above part, we have

een () - ()] <2L jo e (s)-p(s)|ds , te [to-z, to+min(4,4)] (2.1.16)
and
o ()-y@DI<Mt=to|, te [t,—7, ty+min(4,4)] . (2.1.17)

There follows
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ML) |t—t,|*"

oDt , t€[ty—7, ty+min(4,4)], k>0. (2.1.18)
+1)!

. () y(@®)||<
Equation (2.1.18) implies that |Jx, (#)—y(#)|—>0 when k—+w. Hence, x(¢)=y(t)
holds for all t€ [t,—7, t,+min(4,4)] . This completes the proof.

Obviously, the proof of Theorem 2.1.1 is a natural extension of Picard's idea in
studying the existence and uniqueness of a solution of ordinary differential equa-
tion. As done in the case of ordinary differential equations, it is also possible to
prove that the solution depends continuously on the initial function under proper
conditions. In addition, the solution of a delay differential equation can be extend-
ed toward the positive direction of ¢, first from [z,—7, #) to [t,~7, f,+4,) with
A4,>0, then to a larger [#,—7, f,+4,+4,) with 4,>0 and 4,>0, and repeatedly
up to the maximal interval where the solution exists. However, it is very difficult
and even impossible to extend the solution of a delay differential equation toward
the negative direction of ¢, see (Hale 1977).

Worthy of mention is that, unlike the case of autonomous ordinary differential
equations where the uniqueness means that the solutions starting from different
initial conditions do not intersect with each other, the solutions of Eq. (2.1.6) from
different initial conditions may intersect with each other. They may intersect even
infinite many times, but do not destroy their own uniqueness because the intersec-
tions come from the project of different solutions in an infinite dimensional space
into a finite dimensional space.

Example 2.1.2 It is obvious that the linear delay differential equation

)'c(t)=—x(t—§), xeR (2.1.19)

has two distinct solutions x,(¢)=sins and x,(¢)=cost . They intersect with each
other infinite number of times at t=n(k+1/4), k=0,1,2,....

For Eq. (2.1.6), if f(t,x(¢),x(1—7)) is differentiable up to a sufficiently high
order, the k-th order derivative x®(¢) of solution x(¢) may be discontinuous at
to+(k=1)7 , but all x(¢), j<k are continuous at #,+(k—1)z . For example, it is
easy to see from the method of step-by-step that x(¢,)=x(f,+0)=x(t,~0)=¢@(¢,) .
Nevertheless, .ic(t0+0):5c(to—0)=¢(to—0) may not hold. At 7=¢+7, x(¢) is
continuous because of the continuity of the right-hand side f(z,x(¢),x(t-7)) . Ac-
cording to



2.1 Initial Value Problems 33

_Of (4,x(1),x(t-71))
B ot

x(1) Do) f (1,%(2),x(t=1))X(?)

(2.1.20)
+D ooy [ (1,%(2),x(t - 7)) X(t-7),

X(t) may be discontinuous at ¢=t,+7 since %(f—7) may not be continuous there
as explained above. As ¢ increases, the solution x(r) becomes more and more
smooth. This property, usually referred to as the flatness of solution, results in
some good behaviors of delay differential equations.

2.1.2 Solution of Linear Delay Differential Equations

For the initial value problem of a linear delay differential equation, the conditions
of existence and uniqueness of its solution always hold true. As done for linear
differential equations, the linear delay differential equations can be solved by
means of the Laplace transformation. To present this technique as simple as possi-
ble, this subsection is confined to the scalar delay differential equations, even
though all the results are true in the case of higher dimensions.

Consider the initial value problem of a linear scalar delay differential equation

x=ax+bx(t—7)+ f(t), xeR, >0, (2.1.21a)
x()=¢(1), te[-r, 0], (2.1.21b)

where a,beR are constants, f(¢) is a continuous function. In order to perform
the Laplace transform on Eq. (2.1.21), it is essential to establish an exponential
estimation for the solution first. To this end, we need the famous Gronwall ine-
quality as following.

Lemma 2.1.1 Suppose that u(¢) and a(¢) are two real continuous functions on
interval [¢, d], and F(¢#)=0 is an integrable function on [¢, d]. Furthermore,
«(?) is non-decreasing on [c, d].If

u(t)<a(t)+ [ Blsyuls)ds, (2.1.22)
then
u(t) < a(t)expl | s)ds] (2.1.23)

Proof Let R(t)= j:ﬂ(s)u(s)ds , then Eq. (2.1.22) becomes u(?)<a(t)+R(t) . It

is easy from this inequality to derive
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%zﬂ(t)u(t)sﬂ(t)[a(t)+ R(1)] (2.1.24)

and
%{R(s)exp[— [Boacy<a)Beexpl-[BO)dE. (2125
Integrating Eq. (2.1.25) from a to ¢ yields
R(O)< [ Bs)expl [ AE)dCKs. (2.126)

Because a(¢) is non-decreasing on [c, d], substituting Eq. (2.1.26) into Eq.
(2.1.22) gives

u(@n) <a(t)+a(0) [ fs)expl [ &)acKs}
(2.1.27)

=a(t)-a(t) [ dfexpl [ BENET = atexpl [ B(s)ds].

This completes the proof of the lemma.
Applying the Gronwall inequality to Eq. (2.2.21) gives the following theorem.
Theorem 2.1.2 For the unique solution x(z,0,4) of Eq. (2.1.21), there exist two
positive constants ¢ and £ such that

1(,0,6)| Sae/”[||¢||+é [Ir@has, 1> (2.1.28)

Proof Equation (2.1.21) is equivalent to

$(0)+ [Tax(s)+bx(s —0)+ f(s)]ds, 10,
x(t)= 0 (2.1.29)
9(0), te[-z, 0]
Hence, the following inequality holds for 1>-7
[x(0)]< max (o) + [ Tlal-beo)|+ [pl-fxts = o)+ £ (o)
= I+ [JJal-becsdlds + [ol-tpeollds+ ['el-pecslds+ [ | sl
(2.1.30)

<[ +[plo)gl+ [ 7(lds1+ [ al+lpDlxcs)lds

~ o+~ [17)ast+ [ Blxols.
a
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where a=1+p|r and pB=[a|+/b| . Applying the Gronwall inequality to Eq. (2.1.30)
yields Eq. (2.1.28). This completes the proof of Theorem 2.1.2.

Having had the exponential estimation for the solution x(¢), we can perform
the Laplace transform on Eq. (2.1.21) so that

XA =4"(D)[¢(0)+be™* f P(s)e ™ ds+F(A)], (2.1.31)
where
AA)=A—a-be™™, X(1)= I(:wx(t)e*“dt, F(l)= IO”’ F(t)e dt . (2.1.32)
Here, A(A) is the characteristic function of Eq. (2.1.21a). Let

h(t)= J’rm (A)etdA, (2.1.33)

where I is a contour on the complex plane with ReA>/f . Obviously, A(%)
serves as the impulse response function since it is the response of the system gov-
erned by Eq. (2.1.21a) subject to a Dirac impulse f(¢#)=45(¢) and the initial condi-
tion ¢(¢)=0 on te[-7, 0].

Applying the inverse Laplace transform to Eq. (2.1.31) yields

x(2)=h(t)p(0)+ I A (A)e[be™™ f P(s)e M ds+F(A)]dA . (2.1.34)
i T
By using the theorem of convolution, Eq. (2.1.34) can be simplified to

x(1)=h(t)p(0)+b frh(t—z'—s)¢(s)ds+ 1: h(t—s)f(s)ds . (2.1.35)

The first two terms in the right-hand side of Eq. (2.1.35) are composed of the gen-
eral solution of the homogeneous equation corresponding to Eq. (2.1.21a) under
the initial condition (2.1.21b). Denoting this solution by x(z,0,4) , we arrive at the

following formula of variation-of-constants.
Theorem 2.1.3 The general solution of Eq. (2.1.21) is in the from

x(1) = x(t,0,9) + I(:h(t—s) £(s)ds, (2.1.36)

where x(2,0,¢) is the general solution of Eq. (2.1.21a) under the initial condition
(2.1.21b) when f()=0.

Theorem 2.1.3 shows that linear delay differential equations have the same
structure.of solutions.as linear ordinary.differential equations. That is, the solution
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consists of two parts. One is proportional to the non-zero initial function ¢(¢) for
te[—-7, 0], and the other is to the non-zero input f(¢) for 1>0.

Finally, we look at the solution structure of the homogeneous equation corre-
sponding to Eq. (2.1.21a). Let A, be a root of the characteristic function A(1)
and define it as the characteristic root of Eq. (2.1.21a). According to the defini-
tion of A(4) in Eq. (2.1.32), x,(f)=e™" is obviously a solution of Eq. (2.1.21a)
when f(¢)=0. As for all the characteristic roots of Eq. (2.1.21a), each of them
corresponds to a solution of Eq. (2.1.21a) when f(£)=0. All these solutions are
referred to as the fundamental solutions of the homogeneous equation of Eq.
(2.1.21a). Obviously, any linear combination of the fundamental solutions is also a
solution of the corresponding homogeneous equation of Eq. (2.1.21a). This prop-
erty is quite similar to that of ordinary differential equations, but the number of
fundamental solutions here is usually infinite.

If A, is a repeated root of A(A), counted by multiplicity m, the fundamental
solutions corresponding to A, will be x,(¢f)=t*e™ k=0, 1, ..., m—1. To verify this
assertion, substitute x,(¢) into Eq. (2.1.21a) under f(¢)=0 and use the binomial
formula to expand (z—7)*, then we have

%, () —ax, () —bx, (t—7)=[At* +kt* ' —at* —b(t—7)* e "7 e
k

kY oo o
:ezorz[ ,]tk_jA(j)(/lO)’ k=0,1,...,m—1,

j=0

(2.1.37)

where A (4,)=4(4,) and 4Y(4,) represents the j-th derivative of A(1) at
Ao . Because 4®(1,)=0, k=0, 1,..., m-1, all x,(t)=t*e’", k=0, 1, ..., m-1 are
the solutions of Eq. (2.1.21a) when f(¢)=0.

Moreover, it has been shown, in (Dickmann et al. 1995) on the basis of theory
of residues, that any solution of the homogeneous equation corresponding to Eq.
(2.1.21a) under some conditions is in the form

x(r)=qu(r)e"’ : (2.1.38)

where A4;,j=1,2,-- are the characteristic roots and g,(¢),j=1,2,-- are polynomi-
als. In general, the solution of the homogeneous equation corresponding to Eq.
(2.1.21a) is in the form

x(0)= 4,0 + [ (2.1.39)

where the integral approaches to zero as t—+oo .
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2.2 Stability in the Sense of Lyapunov

The stability in the sense of Lyapunov has been widely used to evaluate the per-
formance of dynamic systems no matter whether any time delays are involved or
not. Compared with the dynamic systems free of time delays, the stability analysis
for delayed dynamic systems, of course, is much more complicated in general.
Following the similar routine as done for ordinary differential equations, it can be
shown that there exists a kind of delay differential equations whose stability of ze-
ro solutions depends on the initial time £, see (Qin et al. 1989). The engineering
systems governed by such a kind of delayed differential equations is dangerous
and should be considered to be unstable. For the autonomous dynamic systems
with constant time delays, however, the stability of the zero solutions is indepen-
dent of the choice of initial time ¢, .

The theme of this book is confined to the study on the dynamic systems with
constant time delays. For example, we consider a set of autonomous delay differ-
ential equations with constant time delays 0<7,<7,---<7, as following

.}"(t)zi(y(t),.}’(t—fl),J’(t"Tz),"‘,.V(f—Tz))a yERn’ >4,

yO)=g(t), telty—1, 1],

2.2.1)

where #(¢) is continuous on [f,—7,, f,]. Assume that Eq. (2.2.1) satisfies the
conditions of existence and uniqueness of solution, and denote its unique solution
by F()= F(t.t.8) .

As in the case of ordinary differential equations, the stability problem of a non-
zero solution can always be transformed into that of a zero solution. In fact, a

perturbed solution (#)=j(¢,t,.¢) should be studied to check the stability of non-
zero solution J(¢). Let x(¢)=p(t)-F(¢), then we have

£(0)=F (O +F(O)x(t=7)+ F(t=7)), 2 —7)+ F(1-7,)

- FEOF) 31, 11, (2:2:22)
x()=p()=P(1)-P (1), te[ty—7,, 1]
or simply denote it by
{x(t)zf(x(t),x(t—z'l),---,x(t—z’, ))r 1>, ) (222b)
x(t)=@(t), telty~1,, o).

Obviously, Eq. (2.2.2) has a zero solution starting from ¢(¢)=0, t€[t,—7, 1,] .
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Definition 2.2.1 The zero solution of Eq. (2.2.2b) is said to be stable if for any
£>0, there exists >0 such that any solution x(z,t,,¢) of Eq. (2.2.2b) satisfies
|x(2.t0.8)|<& provided that ||g].<& .

Definition 2.2.2 The zero solution of Eq. (2.2.2) is said to be asymptotically
stable if it is stable and there is a sufficiently small 5">0 such that ||x(z,,,8)|—>0
as t—-+oo provided that |@].<5".

In general, the concepts of uniformly asymptotic stability, exponential asymp-
totic stability and global asymptotic stability can also be introduced as in the case
of ordinary differential equations. Anyway, the widely used concept in engineer-
ing is the asymptotic stability. The analysis of asymptotic stability for autonomous
delayed differential equations will be discussed in detail in this book.

There are basically two important kinds of methods to study the stability of de-
lay differential equations. One is the Lyapunov method, and the other is the meth-
od of characteristic function. The pertinent advantage of the Lyapunov method is
its applicability to both linear and nonlinear delay differential equations. However,
it has great difficulty in both constructing the Lyapunov function and estimating
the derivative of the Lyapunov function along the solution of a delay differential
equation. In addition, the results obtained by the Lyapunov method are usually
conservative. What will be mainly discussed in this book is the method of charac-
teristic function. Though this method works only for linearized delay differential
equations, it offers some useful sufficient and necessary conditions.

2.2.1 The Lyapunov Methods

In this subsection, a few examples are presented to demonstrate how to check the
stability of delay differential equations by using the Lyapunov method. For de-
tailed discussions on this topic, it is referred to see (Qin et al. 1989).

(1) Method of Lyapunov function

Most results, on the basis of the Lyapunov function, about the stability of zero
solution for ordinary differential equations can be extended to delay differential
equations. For example, if there is a positive definite function ¥ in the system
state such that the total derivative of V', i.e., the derivative of V' with respect to
time ¢ along the solution of a delay differential equation, is non-positive definite
or negative definite, the zero solution is stable or asymptotically stable.

Example 2.2.1 Consider a delay differential equation
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x(t)=—x(1)x*(t-7), x€R. (2.2.3)

Let the positive definite Lyapunov function be ¥ (x)=x?/2, then the total deriva-
tive of V(x) reads

idl;;l a2 = XOXO=-x*(0)x*(t-7)<0. 224)

Thus, the zero solution of Eq. (2.2.3) is stable.

In many cases, great difficulty may be encountered in estimating the total de-
rivative of V' by a direct use of the method of Lyapunov function. To avoid the
difficulty, Razumikhin proposed a useful condition as following. In order that the
zero solution is asymptotically stable, it is necessary to require that the total de-
rivative of V' is negative definite when

lx(t-D)|<|x(t)| for ¢>1,. (2.2.5)

This inequality is usually called the Razumikhin condition. The idea behind this
condition is quite simple. To ensure the zero solution asymptotically stable, the
solution of an initial value problem should have a tendency of decreasing. If the
inequality |x(#)|<|x(¢—7)| holds for all 7¢,, the solution is undoubtedly asymp-
totically stable. So, it is necessary to check the stability for the case of
|x(t=7)|<|x(r)] only. This implies that the Razumikhin condition does not
strengthen the stability conditions, but reduce the unnecessary complexities.
Example 2.2.2 Check the stability of a linear delay differential equation

x(t)=-2x(t)—x(t-1), xeR. (2.2.6)
Let ¥V (x)=x?/2, then the total derivative of ¥(x) reads

d
d_It/l Eq.(2.2.4)=—2x2(t)_x([)x(t—f) . (2.2.7)

Applying the Razumikhin condition to Eq. (2.2.7) gives

dv
T' Eq24) S=2x 2 (OHx(E)||x(t1-)|<-x*(2) . (2.2.8)

The zero solution of Eq. (2.2.6) is asymptotically stable because —x?

definite.
Example 2.2.3 Find out the asymptotic stability conditions for the following »-
dimensional linear system with a time delay

is negative

x(t)=Ax+Bx(t-7), xeR". (2.2.9)
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We first assume that the matrix A is Hurwitz stable. That is, all the characteristic
roots of A have negative real parts. Then, we suppose that the positive definite
matrix P is a unique solution of the following matrix equation

ATP+PA=-20Q (2.2.10)
with a given positive definite matrix Q . Let the Lyapunov function be defined as
V =xT(t)Px(t)+ J" xT()Qx(t)de . (2.2.11)
t—~T

Along the solution of Eq. (2.2.9), we have

%/lEq.m=—xT(z)Qx(z)+2xT(t)PBx(r—r)—xT(t—r)Qx(t—r)- (2.2.12)

Applying the Cauchy inequality to the second term in the right-hand side of Eq.
(2.2.12) yields

2xT () PBx(t—7)=2x" (t)PBQ"*Q"* x(t-71) 2213)
2.2.1
<x"(t)PBQ'B" Px(t)+x" (t-1)Qx(t—7).
Thus,

(il_V| Eq229 <X ()Qx()+x" (1)PBQ ™' B" Px(1)
! (2.2.14)
S—xT (I)Ql/z (I_Q—I/ZPBQ—IBTPQ—I/Z )Q”zx(t).

Let A, (C) and A,;,(C) be the maximal and minimal characteristic roots of
matrix C, and o, (C) and o,,(C) be the maximal and minimal singular val-
ues of C . The total derivative of ¥ is negative definite if

1= 2 (@ PBQ™' BT PQ?)>0. (2.2.15)
In order that Eq. (2.2.15) holds, it is sufficient that
1074 (@72 PBQ™"*)>0. (2.2.16)
This is true if
1-02,.(Q"*P)o} (BQ™)>0, (2.2.17)
or

02, (0P)|B|;
02.(0")

(2.2.18)
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Therefore, if all entries in matrix B are small enough such that

HB||2<—U@Q_:,# (2.2.19)
Onax (@7 P)
holds, the zero solution of Eq. (2.2.9) is asymptotically stable. This is a quite natu-
ral conclusion when Eq. (2.2.9) is regarded as a slightly perturbed equation from a
set of linear ordinary differential equations with the coefficient matrix A4 being
Hurwitz stable.

(2) Method of Lyapunov functional

In mathematics, the delay differential equations are classified into the catalogue of
functional differential equations. Thus, the general frame for the stability analysis
of delay differential equations is based upon the method of Lyapunov functional.
This method can be demonstrated through an example as follows.

For a given real number >0, let C=C([-r, 0], R") be the Banach space of
continuous functions mapping [~r, 0] into R", and each ¢<C be equipped with
the norm |@|| . =sup;_, o/ |#(s)||, where ||-| is any norm in R".If x,(s)=x(t+s) is
defined for se[—r, 0], then the delay differential equation with initial condition
x(t)=¢(t) for te[o—r, o] can be recast in the form of functional differential

equation

{X=f(taxr)9 (2220)

x,=¢.

For instance, the scalar delay differential equation x(¢#)=—cx(¢)[1+x(¢—1)] can
be written as x=f(¢t,x,), where [f(,y)=—cw(0)[1+w(-1)]. Similarly, if

Sp)=gy(0),w(-7)), then x=7(1,x,) gives H(t)=g(t.x(1),x(1-7)).
Example 2.2.4 Consider the scalar differential equation with a time delay

x(H)=ax(t)+bx(t-71), (2.2.21)
namely,
x(®)=ax,(0)+bx,(-7). (2.2.22)

Let the Lyapunov functional ¥ be defined as
1 0
V(x) =23 (0)+ u j x2(s)ds, u>0, (2.2.23)

which is positive definite. The total derivative of V' is
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dv
— bq222m =(a+@)x} (0)+bx, (O)x, (1)~ px?(~7)

dr
) . at+u b2 x,(0)
=[x 0) x( T)]{ b2 —u}{xr(‘”}

(2.2.24)

In order that the total derivative of ¥ is negative definite, it is sufficient and ne-
cessary that the following two inequalities hold

a+u<0, —4a+u)u-b>>0. (2.2.25)

This fact is true if g=-a/2 and a®>-b>>0. In other words, the zero solution is
asymptotically stable if a<0 and |b|<—a . In this case, the stability is independent
of the time delay.

It is certainly possible to check the results of Example 2.2.3 by using the Ly-
apunov functional, too. In fact, the Lyapunov function ¥ defined in Eq. (2.2.11)
is essentially a Lyapunov functional as following

V(x)=xTOPx 0+ [ ()@ (s)ds, (2.2.26)

and the total derivative of V' now becomes

d—Vl ba29) =%, (0)@x,(0)+2x/ (0)PBx, (—7)~x] (-7)Qx, (~7)

de
[x@7] @ -PB] x,0)
T ko] -8B @ | x(-0]

In order that Eq. (2.2.27) is negative definite, it is sufficient and necessary that the

(2.2.27)

coefficient matrix in the right-hand side of Eq. (2.2.27) is positive definite. This is
definitely true if ||B]|, is small enough.

Finally, it is worthy to point out the possibility of determining whether or not
the zero solution of a delay differential equation is unstable by means of the Ly-
apunov method, see, for example, (Hale 1977).

2.2.2 Method of Characteristic Function

Consider an n-dimensional linear delay system governed by

1
x=Ax+) B,x(t-7,), xeR", A, B,eR™, (2.2.28)

J=1
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where 0<r,;<---<7; are the time delays. Substituting the candidate solution
x()=ae* with a constant A and a constant vector a into Eq. (2.2.28) yields

/
det(AI-A-) Be"")=0, (2.2.29)
j=l
where TeR™ is the identity matrix. Eq. (2.2.29) is called the characteristic
equation of Eq. (2.2.28), and its roots are called the characteristic roots of Egq.
(2.2.28). Furthermore, Eq. (2.2.29) can be recast as following

PAV=A +d (A ++-+d,_ (A)A+d,(1)=0, (2.2.30)

where d;(A) are the polynomials with respect to ¢™*", ¢, ... and e*" . In
particular,

d,(A)=—e*"tr(B,)—e ' tr(B,)—--—e*"tr(B,), (2.2.31)

where tr(B;) is the trace of matrix B;. The characteristic function p(4) in Eq.
(2.2.30) is usually called a quasi-polynomial or emphatically characteristic quasi-
polynomial since d,;(1) may include a number of exponential functions in A4 .
The method of characteristic function is to study the system stability by investi-
gating the root allocation of p(A4).

Equation (2.2.30) gives the asymptotic behavior of p(4)

p()=2"+0(A"), (2.2.32)

as |A|->+o under the condition ReA>0. This implies that the roots (if any) of
p(4) must lie in a sufficiently large disk. If this is not the case, p(1) should have
an infinite number of roots on the open right half-plane. Then, there is a root se-
quence {A;} such that p(4,)=0 and |ﬂj|—>+oo as j—+oo. This gives a contra-
dictory equation

oz%—mo(l) . (2.2.33)

J

On the other hand, the quasi-polynomial p(A) is a non-constant, analytic function
in 4 on the entire complex plane, so the roots of p(A) are isolated, and only a fi-
nite number of roots lie in any compact set of the complex plane. The above two
facts can be summarized as a lemma.

Lemma 2.2.1 The quasi-polynomial p(4) in Eq. (2.2.30) has only a finite
number of roots on the right half-plane defined by ReA>0.

Moreover, we have the following claim.
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Lemma 2.2.2 The number of roots of p(1) in any given strip
{A=x+iy | a<x<b} is finite.

Proof Assume on the contrary that there are an infinite number of roots {4}
of p(4) in the given strip. Because only a finite number of roots lie in a compact
set of the complex plane, we have |1;|—>+o subject to a<Red;<b as j—>+ow.
This results in the contradictory Eq. (2.2.33) again. The proof is completed.

Lemma 2.2.2 reveals an important feature of delay differential equation, which
is essential for the stability analysis.

Lemma 2.2.3 If all the roots of p(A1) have negative real parts, then, there exists
a positive number a such that ReA<-«a holds true for all roots of p(1).

Proof Assume on the contrary that there is a root sequence {1} of A=re’’ on
the open left half-plane such that ReA;, >0 when j—+o0. Then, we must have
|A;| >+ as j—+eo since only a finite number of roots lie in a compact set of the
complex plane. This again gives the contradictory Eq. (2.2.33).

Example 2.2.5 Consider the simple quasi-polynomial p(1)=A-a-be™ . If
b#0, p(4) has an infinite number of roots. Assume that {4} is a sequence of
roots of p(A), then

|2, —al=[ple ™" . (22.34)

If |4;] >+, then Reld ,—>—00 as j—+oo. This implies that there exists a real
number « such that ReA<a holds for all roots 4 of p(1). Because p(A) is
analytic on the entire complex plane, the roots must be isolated, and the number of
roots in any compact regions of the complex plane is finite. Moreover, the number
of roots on the right half-plane is finite. In fact, the roots in the strip
{A=x+iy | 0<x<a} must lie in some bounded rectangle. Otherwise, there is a se-
quence of roots {4, } with |4,|>+c and 0<Red;<a as j—>+wo. This contra-
dicts Eq. (2.2.34). Thus, the number of roots with ReA>0 must be finite.

Assume that all the roots of p(1) are {4;} counted by multiplicity m;. As
pointed out in Subsection 2.1.2, any solution of a linear homogeneous delay dif-
ferential equation can be expressed as a linear combination of the fundamental
solutions such as t*e*', k=0, 1,..., m;, j=1,2,...,+0 . Thus, we have the fol-
lowing assertions for the stability of delay differential equation.

Theorem 2.2.1 The zero solution of Eq. (2.2.28) is asymptotically stable if and
only if all the roots of Eq. (2.2.30) have negative real parts.

Theorem 2.2.2 Assume that p(4) in Eq. (2.2.30) has a finite number of simple
pure-imaginary-roots-and-all-the-other-roots of p(1) have real parts less than a
negative number, then the zero solution of Eq. (2.2.28) is stable.
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Theorem 2.2.3 If p(A4) in Eq. (2.2.30) has any repeated pure imaginary roots
or any roots with positive real parts, the zero solution of Eq. (2.2.28) is unstable.

The proofs of the above theorems are based on the estimation techniques for
contour integral, see (Qin et al. 1989) for more details.

As for the analysis of asymptotic stability, the Pontryakin Theorem stated be-
low serves as a very powerful tool.

Theorem 2.2.4 Let R(w)=Re[p(iw)] and S(@w)=Im[p(iw)], then the zero so-
lution of Eq. (2.2.28) is asymptotically stable if and only if R(®w) and S(®) have
real, simple and interlacing roots, and the following inequality holds for all real

R(@)S"(@)-S(@)R (0)>0, (2.2.353)

where the prime represents the derivative with respect to o .
The proof of this theorem is not presented here since it is rather lengthy. To un-
derstand the theorem intuitively, we note that Eq. (2.2.35a) is equivalent to

S'(@)R(w)-R'(w)S(w) 0

)5 o) (2.2.35b)

——d—argp(ia)):
do

Thus, a quasi-polynomial p(A) is asymptotically stable if and only if R(w) and
S(w) have real, simple and interlacing roots, and the phase angle of p(iw) in-
creases monotonously with an increase of @ .

If the time delays are regarded as system parameters, a root of p(4) is con-
tinuous with respect to the time delays. This fact leads to the following theorem.

Theorem 2.2.5 As the time delays vary, the multiplicity summation of roots of
p(1)=0 on the open right half-plane can change only if a root appears on or
crosses the imaginary axis.

Proof For the sake of simplicity, the proof is given for the case of a single time
delay. To look at the effect of the time delay, denote p(1) by p(4,7r). Lemma
2.2.1 shows that the multiplicity summation of roots of p(4,7) on the open right
half-plane is finite. Suppose that the multiplicity summation changes, but no roots
appear on or cross the imaginary axis. This can occur only when a root appears at
infinity. In fact, let A=A(r) be a root of p(4,7)=0. For a small circular disk
around A(r) and any 7' sufficiently close to 7, the multiplicity summation of
roots in the disk is equal to the multiplicity of A(7). From the Rouche's theorem
in complex analysis, a root A(7) is not able to appear or disappear, or change its
multiplicity all of a sudden at any finite point on the complex plane. Hence, there
exists a time delay # and a root A(r) of p(4,7)=0 such that |[A]>+w as
7—>74+0 or 7—>7#-0 for ReA>0 . However,
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P _,

e +o(l) (2.2.36)

holds for ReA>0 when t—#+0 or r—>#-0 since |e‘”(” <t. Equation (2.2.36)
contradicts the fact that p(A,7)=0. Then, as r varies, the multiplicity summation

of roots of p(4,7)=0 on the open right half-plane can change only if a root ap-

pears on or crosses the imaginary axis. This completes the proof of Theorem 2.2.5.
From this proof, the same result holds true when the roots of p(A) are consid-
ered as functions with respect to the coefficients of p(A1).

A quasi-polynomial usually has an infinite number of roots, so it is hard and
even impossible to find out all the roots. Hence, Theorem 2.2.1 can only be used
directly to deal with a few simple cases such as the so-called delay-independent
stability of a scalar delay differential equation.

Definition 2.2.3 The solution of a delay differential equation is said to be de-
lay-independent stable if it is asymptotically stable for any given time delays.

The following theorem is obviously true.

Theorem 2.2.6 Equation (2.2.28) is delay-independent stable if and only if the
following two conditions hold.

(a) Equation (2.2.28) is asymptotically stable when all the time delays disap-
pear.

(b) The marginal stability condition p(iw)=0 has no real root @ for all given
time delays.

Example 2.2.6 Study the condition of delay-independent stability of a linear
delay differential equation as following

x()+ax(®) +bx(t—1)=0, xeR. (2.2.37)
The corresponding characteristic function of Eq. (2.2.37) is

p(A)=A+a+be™™ . (2.2.38)

When 7 =0, we have p(1)=A+a+b, and a+b must be positive to guarantee the
Hurwitz stability of the system without time delay. If 7 > 0, the marginal stability
condition p(iw)=0 leads to |iw+a|=|p|. It yields @’ +a*-b*=0. Conversely, if
there exists @ > 0 satisfying this equation, then |iw+a|*=|b|* holds. Thus, there is
a real number €[0, 2n) so that iw+a=be'’. So we have r=0/w such that
p(i®)=0. If a> ~b*> =0 then p(0) =a+b =2a # 0since a+b>0. Hence, for
all given delay 7, p(iw)#0 holds for all real w if and only if @ +a*-b*=0
does not have any real root @ other than zero. This fact is true if a> —b* > 0.



2.2 Stability in the Sense of Lyapunov 47

Thus, Eq. (2.2.37) is delay-independent stable if and only if both a+5>0 and
a® —b* 20 hold true.

2.2.3 Stability Criteria

To testify the asymptotically stability of a linear delay differential equation, it is
sufficient to investigate the allocation of characteristic roots as analyzed in Sub-
section 2.2.2. Because a quasi-polynomial usually has an infinite number of roots,
it is hard, and even impossible, to find out all the roots. So, it is highly demanded
to develop some practical stability criteria. This subsection focuses on the stability
criterion for the linear delay differential equation with following characteristic
quasi-polynomial

PA) =X +d, (A ++d,_ (A)A+d,(2)=0, (2.2.39)

e, and e*7, and 7,

where d,(A) are polynomials with respect to e
are the time delays. The main result of this subsection is the Hassard theorem as
following.

Theorem 2.2.7 Assume that the characteristic quasi-polynomial p(4) of a lin-
ear delay differential equation has no roots on the imaginary axis. Let
M(w)=Re[i" p(iw)], N(@)=Im[i"p(iw)], and p,>p,>-->p, >0 be the posi-
tive roots, counted by multiplicity, of M(®) . Then, the delay differential equation
is asymptotically stable if and only if

(@) p(0)#0,

(b) N(p;)#0 forall j=1,2,...,m,

n 1 m S - _

(©) S+5(D sgnN(O)+;(—l) sgnN(p,)=0.

As p(A) is assumed to have no roots on the imaginary axis, condition (a) in
Theorem 2.2.7 is certainly satisfied. Thus, it requires verifying conditions (b) and
(c) only. Before the proof of the theorem, two simple examples are presented to
demonstrate how to use Theorem 2.2.7 to complete the stability analysis.

Example 2.2.7 As shown in Example 2.2.6, the system governed by the quasi-
polynomial p(A1)=A+2—-e*
sult by using Theorem 2.2.7. Here n=1, p(0)=120, M(w)= w+sinwr and

is delay-independent stable. Now, we verify this re-

N(w)=-2+coswr . Because M (w) has no positive roots for any given 7, so
m=0. Condition (c¢) in Theorem 2.2.7 is n/2+sgnN(0)/2=0, which is definitely
true because N(0)=-1<0. This completes the verification.
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Example 2.2.8 Consider the stability of p(4)=4*+24+e™* when r=1 and
7=4. We have n=2, p(0)=120, M(w)=2w-sinwr and N(w)=w’—-coswr .
When r=1, M(w) has no positive roots and m=0, and N(0)=—1<0 holds true.
Thus, n/2+(-1)"sgnN(0)/2=0. When r=4, M(w) has a positive root
p,=0.4739, and N(p,)=0.5436. This fact, together with m=1 and N(0)=-1,
gives n/2—sgnN(0)/2+sgnN(p,)+0. Thus, all the conditions in Theorem 2.2.7
also hold for 7=4. The system corresponding to p(A)=A*+24+e™*" is asymp-
totically stable for both 7=1 and 7=4.

To prove Theorem 2.2.7, three lemmas are required. These lemmas are related
to a contour /"= [;U[I, for any given r>0 as shown in Fig. 2.2.1, where

I={A=re", 6:-n/2-n/2}, (2.2.40a)
IL,={l=iw, o:r—>0->-r}. (2.2.40b)

Here, r is chosen to be large enough such that 7~ encircles all the roots of p(4)
on the right half-plane Re120.

Re

Im
T
T
&\\\‘

-T

Fig. 2.2.1. Contour [~ for Theorem 2.2.7

Lemma 2.2.4 Under the conditions of Theorem 2.2.7, the number of roots,
counted by multiplicity, of p(1) with Re41>0 is (2ni)'1§r[ p'(A)/ p(D)]dA.
Proof Because p(A) is an entire function, there is a non-zero entire function

q(A4) on I' and in its interior such that

N
pA=gW]J(a-2))" (2.2.41)
=
where z; are the roots of p(A) encircled in /" . Then, we have
Xk
PC)_dinpa))_$ b g 22.42)
p(A) dA S A-z; q(A)
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The Cauchy theorem in complex analysis implies that

d AP0 (2.2.43)
rq(A)

By using the theorem of residue, we have

4 L di=2mi, j=12,..N. (2.2.44)
Fﬂ,—zj

Substituting Egs. (2.2.44) and (2.2.43) into the contour integral of Eq. (2.2.43) on
I" concludes that Lemma 2.2.4 is true.

Now, we start the analysis of next lemma. The property of the contour integral
on [ is considerably simple. In fact, noting the asymptotic behavior

pA)=A"+d, (WA +O(A"™) (2.2.45)
and

PA)=ln+d(A" +0o(A"), (2.2.46)
we have

LA Ry W1+o(4”), (2.2.47)

p(A)
as |A|>+o with ReA>0 . Thereby, we obtain

1 pA),, 1 @n» Voo .
- n—p%d,i_z J: [n+d/re)dg+00). (2.2.48)

However, d,(1) is a linear combination of the exponential functions e™*",

e, ...and e*" with 7,>0,s0 |d/(r¢')| is bounded and lim,_,.,,d[(re')=0.

Applying the dominated convergence theorem to Eq. (2.2.28) yields

L [P By,;n

im — . (2.2.49)
ro+0 1 o p(l) 2
On 7, , the following two asymptotic expressions hold
M(@)=0"+0(a|"™), N(@)=0(a|™). (2.2.50)

For sufficiently large ©>0, M(w)>0 and N(w)=0o(M(w)) are true. As it is as-
sumed that p(iw)#0 holds for real @, there exist A(w)>0 and real ¢(w) such
that
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M(@)+iN(w)=A(w)e*™ . (2.2.51)
Then, we have

M(co)+1N(a)) A'(®)
M(w)+iN(w) A(w)

+ig'(w), (2.2.52)

and

[ PDg 1 A@)

2mi o p(4)  2mi A( )+1¢ (@)} (2.2.53)

From the definition of M(w) and N(®), one of them is an even function and the
other is an odd function. So, 4'(w)/A(@)=[M*(w)+N?*(@)]'/[2(M*(®)+N*(®))]
is an odd function and ¢'(w)= [M(w)N'(®)-N(o)M'(0))[M*(@)+N*(@)] is an
even function. As a result, we have

—d/l 1 ¢(O)—¢(r)]=m. (2.2.54)
Hc°2m 2 p(A) T
The above facts can be summarized as the following lemma.
Lemma 2.2.5 Under the conditions of Theorem 2.2.7, the number of roots,
counted by multiplicity, of p(4) with ReA>0 is n/2+¢(0)/x.
Lemma 2.2.6

¢(O) 1( n” SgnN(O)+Z( 1)’ "'sgnN(p,). (2.2.55)

j=1

Proof As M(0)+iN(0)=0, and either M(®) or N(®) is an odd function, ex-
actly one of the following four cases holds true. (a) M(0)=0 and N(0)>0, (b)
M(0)=0 and N(0)<0, (c) M(0)>0 and N(0)=0, (d) M(0)<0 and N(0)=0.

If M(w) has no positive roots, the curve M(w)+iN(w) for @>0 starts at a
point satisfying one of the conditions (a), (b) and (c), traces a path on the half-
plane M(w)>0, and N(w)=0o(M(w)) as @—>+wo. Thus, the change in ¢(®) on
the interval [0, +o) is —n/2, n/2 or 0, depending on the conditions of (a), (b) or
(c). As a result, we have

0—¢(O)=—gsgnN(O) . (2.2.56)

In general, let p,2p,2>---2p,, >0 be the positive roots, counted by multiplicity,
of M(w). We can show that m must be finite as in the proof of Lemma 2.2.1 be-
cause of Eq. (2.2.50). Thus, we have
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s
¢(Pm)-¢(0)=5[SgnN(pm)-SgnN(O)]-SgnM(% , (2.2.57a)
T pP;tp;,
¢(/J,-)—¢(p,~+1)=5[SgnN(p,)—SgnN(pj+l)]'SgnM(-Lz—’—'),
j=1,2,...,m, (2.2.57b)
where p,,, =0, and
T
0—¢(p1)=—55gnN (2) . (2.2.57¢)
Summing up both sides of the above equations and noting that
+p; 0, p;=pPus
sgn (BB T (2.2.58)
2 (_1) ’ pj+]<pj,
we arrive at
1 m S .
HO)=rl—(~1)"sgnN(0)+ (1) sgnN(p,)] . (2.2:59)

Jj=l
This completes the proof of Lemma 2.2.6.

At this stage, Theorem 2.2.7 can be immediately proved by a direct use of the
above three lemmas. As shown in (Hassard 1997), this theorem can also be ex-
tended to the case when p(A) has a finite number of pure imaginary roots.

Let R(w)=Re[p(iw)] and S(w)=Im[p(iw)] again, it is easy to show that

S'(@)R(@)-R'(@)S(@) _ N'(@)M(w)-M'(@)N(w)

Rz(a))+S2(a)) M2 (a))+N2 () (2.2.60)
Noting that
4 gl plia)]=—-arctan (@) N'(a))A/i(a))—M;(a))N(a))
do do M(w) M?*(w)+N*(®)
(2.2.61)
- agpio),
we obtain
arg plio)|;” =argli " pia)];” . (2.2.62)

From the proof of Lemma 2.2.6, the variation of arg[i™”p(i®)] is just
P(©)=g(0)==g(0)rwhenn@ varies'ftom zero to the positive infinity. Now, We
are in the position to state the Michailov’s criterion as following.
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When p(A) has no root on the imaginary axis, all the roots of p(4) stay on the
open left half-plane if and only if the variation of arg p(iw) is nn/2 when @ in-
creases from zero to the positive infinity, namely,

(2.2.63)

However, it is not easy to verify Eq. (2.2.63) in practice. So, the following crite-
rion in integral form is more preferable.

Theorem 2.2.8 Assume that p(4) has no root on the imaginary axis, then, all
the roots of p(1) stay on the open left half-plane if and only if

JOM Z(w)dw= ? ’ (2.2.64)
where
Z(w )_d[argp(lw)] R(CU)S (w)- S(a))R (@) (2.2.65)

Remark 2.2.1 In order to check Eq. (2.2.64), it is sufficient to verify

j Zw)do > 21)” (2.2.66)
if a positive number s is chosen such that [ Z(w)dw<n/2.
Example 2.2.9 Consider again the quasi-polynomial p(1)=A+2-e™* in Ex-
ample 2.2.7. The function Z(®) now is in the form
Z(w)= 2—7+(1-27)coswt+wrsinwr (2.2.67)

®* +4coswr-2wsinwr+5

By integrating Z(w) numerically, we find ["Z(w)dw=n/2 =1.5708 . According
to Theorem 2.2.8, all the roots of p(A1) stay on the open left-half plane for any
given time delay.

Example 2.2.10 Check the stability of a delay differential equation with the
following characteristic quasi-polynomial

p(A)=0.12+0.321+0.5+(0.11+0.2)e * +(0.24+0.3)e™*2.  (2.2.68)
Now, we check whether [“Z(w)dw=n ~3.1416 holds by using numerical inte-

gration. The computation shows that p(1) is asymptotically stable when z,=3
and.z,=1.5,and.is.unstable for.z,=2.5_and r,=2



2.2 Stability in the Sense of Lyapunov 53

In control engineering, an effective and popular method for testifying the sta-
bility of linear delay systems is the graphic method of the Nyquist diagram. The
method is based on the following theorem.

Theorem 2.2.9 A linear dynamic delay system with Eq. (2.2.39) being the
characteristic quasi-polynomial is asymptotically stable if and only if the Nyquist
diagram of W (i), where

W(ﬂ)zé’—i’% , (2.2.69)

does not encircle the origin of the complex plane.
Proof 1t is easy to see from the Cauchy theorem in complex analysis that

WA ge LgEAD_ g, L gp Ay, . (2.2.70)
WY 2mid p(d) A+l 27 Ir p(Q) o

since n/(A+1) is analytic within /~. From Lemma 2.2.4, the left-hand side of Eq.
(2.2.70) also counts the number of roots of p(1) with ReA>0 . Substituting

W (A=W (A)e"” 2.2.71)

into the right-hand side of Eq. (2.2.70) gives

AR L i

pP e _Znicjrd[an(,i)]_2ni4f[d1n|W(,1)|+1de] .
_6,-6, -
Coom

where 6, and 6, are the initial and final values of phase angle of W(1) when A
moves along /[ in the counter-clockwise direction exactly one circle. Because
W(A)—>1+0- as || >+ with ReA1>0, the quasi-polynomial p(A) has no roots
with ReA=0, or equivalently 8,-6,=0, if and only if the Nyquist diagram of
W(iw) does not encircle the origin of the complex plane.

Example 2.2.11 Confirm the stability of p(4) in Eq. (2.2.68) by using Theo-
rem 2.2.8. As shown in Fig. 2.2.2a, the Nyquist diagram of p(iw)/(iw+1)? with
7,=3 and 7,=1.5 does not encircle the origin of the complex plane. Thus, the
quasi-polynomial p(A) is asymptotically stable. As for 7,=2.5 and 7,=2, p(A)
is unstable because the origin stays in the region bounded by the Nyquist diagram
p(iw)/(iw+1)* shown in Fig. 2.2.2b.
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Fig. 2.2.2. The Nyquist diagrams of p(iw)/(iw+1)*;a. r,=3 and 7,=1.5,b. 7,=2.5 and

7,=2

2.3 Important Features of Delay Differential Equations

As shown in the previous sections, the delay differential equations can be studied
in a similar way for ordinary differential equations in many aspects, and some re-
sults are also similar to those for ordinary differential equations. However, the
delay differential equations are indeed different from ordinary differential equa-
tions. Example 2.1.2, for instance, indicates that the uniqueness of the solution of
a delay differential equation does not exclude the possible cases where different
solutions may intersect with each other. This is not the case for ordinary differen-
tial equations.

The most notable feature of a delay differential equation is the infinite dimen-
sions of both state space and solution space. The state space of a delay differential
equation is an infinite-dimensional Banach space, rather than the Euclidean space
for ordinary differential equations. As stated in the beginning of Section 2.1, the
state of a dynamic system with a time delay 7 can only be determined if its initial
state is given as a function vector ¢(¢) in the Banach space C([t,—7, #,],R"), in-
stead of a constant state vector of finite dimensions in the Euclidean space. The
solution space of a delay differential equation, no matter what dimensions the
equation has, is always infinite-dimensional, whereas the solution space of an or-
dinary differential equation is of finite dimensions. This fact can be alternatively
understood as following. The characteristic function of a linear delay differential
equation includes at least one exponential term due to time delays, and hence may
have an infinite" number of ‘characteristic roots, while an ordinary differential
equation of order » has just n characteristic roots. This difference is the essential
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cause that may give rise to great difference between these two kinds of differential
equations.

Though the time delays are often very short in applications, they should be ne-
glected or simplified with a great care. In what follows, a number of simple, but
interesting examples will be given to demonstrate the effect of time delays on the
system dynamics. They will lead readers to the latter chapters of the book.

(1) Effect of time delays on the uniqueness of solutions
Example 2.3.1 Consider a nonlinear delay differential equation
x()=[x(t-7)-K]", xeR, 2.3.1)

where K is a constant. When =0, Eq. (2.3.1) becomes an ordinary differential
equation

x(0)=[x(t)-K]". (23.2)

Under the initial condition x(0)=K , Eq. (2.3.2) has two solutions. One is x(f)=K
and the other is x(£)=K+2+2¢*/(3+/3) . Using the method of step-by-step, how-
ever, we can show that the solution of Eq. (2.3.1) is unique under any continuous
initial functions if 7>0.

Example 2.3.2 Consider again a nonlinear delay differential equation

#W(0)=[x(t)-x(1-7)]", xeR. (2.3.3)

When 7=0, this equation degenerates to =0, the existence and uniqueness of
the solution hold true under any initial condition. If the initial function
x(6)=¢(t)=K is assumed for te[-7, 0], Eq. (2.3.3) has at least two solutions
x(1)=K and x(t)=K+2+2¢t"*/(34/3) when t€[0, 7].

(2) Effect of time delays on the stability of solutions

Example 2.3.3 Consider a set of linear delay differential equations

{)'c(t): yt—-71), x,yeR,

234
JO)=-x(t-7). -

When 7=0, the zero solution of Eq. (2.3.4) is stable. For a sufficiently short time
delay 7, however, it is easy to show that the zero solution of Eq. (2.3.4) is unsta-
ble. In fact, the characteristic equation of Eq. (2.3.4) is

A+e?t =0. (2.3.5)
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Let the root of Eq. (2.3.5) be a function in 7 and denote it by A(7), we can read-
ily verify that

A(0)=Hi,

d(Red
(dr ) o =L (2.3.6)

Thereby, Eq. (2.3.5) has a pair of conjugate characteristic roots with positive real
parts when the time delay 7 is a sufficiently small, positive number.
Example 2.3.4 Consider a set of linear delay differential equations

x()=Ax(t)+Bx(t—71), 2.3.7)
where
01 0 0 0 O
A=|-1 1 0|, B=[1 -1 0. (2.3.8)
0 0 -1 0 0 0

The corresponding characteristic equation reads
PA)=(A+D[A =A+1+(A-1e™*]=0. (2.3.9)

When =0, Eq. (2.3.9) has a repeated root A=0 and the zero solution is unstable.
For 7>0, we find that A=0 is a simple characteristic root and all other charac-
teristic roots have negative real parts. Thus, the zero solution is asymptotically
stable.

As time delays often produce great difficulty in the dynamic analysis, it is cer-
tainly beneficial to simplify the delay terms in a delay differential equation before
it is analyzed or solved. A natural idea is to use the truncated Taylor expansion for
the delay terms in a delay differential equation. The following example, however,
indicates that the abuse of Taylor's expansion may give a wrong prediction of the
system dynamics.

Example 2.3.5 Consider a linear delay differential equation

x()=-2x(t)+x(t-7), x€R. (2.3.10)
According to Example 2.2.6, the zero solution of Eq. (2.3.10) is delay-independent

stable. For any short time delay 7 satisfying 0<7<<1, substituting the first order
Taylor expansion x(1—7)~x(¢)—z(¢) into Eq. (2.3.10) yields

(r+1)x(t)+x()=0. (2.3.11)
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The approximated differential equation is asymptotically stable since z>-1. If the
second order Taylor expansion x(¢—7)~[x(¢)—rx(¢)+72%(¢)/2] is substituted into
Eq. (2.3.10), the result is a second order ordinary differential equation

T25() = 2 +1)5(t) - 2x(1)=0. (2.3.12)

It is easy to verify, from the Rough-Hurwitz criterion, that the zero solution of Eq.
(2.3.12) is unstable. This example shows that great care must be taken when the
Taylor approximation of higher orders is used to simplify the delay terms. The ef-
ficacy of the Taylor expansion of delay terms will be analyzed in detail in Section
5.3.

It is also worthy to notice that the stability criteria of delay differential equa-
tions of neutral type are quite different from those for retarded type. For example,
the zero solution of a delay differential equation of retarded type is asymptotically
stable if and only if all the characteristic roots have negative real parts, but this
may not be the case for a delay differential equation of neutral type. That is, the
zero solution of a delay differential equation of neutral type may not be asymp-
totically stable even if all the characteristic roots have negative real parts. As stat-
ed in (Kolmanovskii and Myshkis 1999), all the characteristic roots of the fol-
lowing delay differential equation of neutral type

x(t)=-x(t)-x(t-7), xeR (2.3.13)

lie on the left half-plane, but an infinite number of them are closely accumulated
to the imaginary axis so that the zero solution of Eq. (2.3.13) is unstable.

(3) Effect of time delays on the periodicity of solutions

Example 2.3.6 Consider the delay differential equation
X(@)+x(t—-7)=0, xeR, (2.3.14)

which serves as the simplest model for delayed linear oscillators. Equation
(2.3.14) has a periodic solution if z=0. For any 7>0, however, Eq. (2.3.14) has
no periodic solution at all because the corresponding characteristic equation
A*+e7*"=0 has no pure imaginary roots. Intuitively speaking, the truncated Tay-
lor expansion of the delayed stiffness term x(#—7)~x(¢)—ni(¢) produces a negative
damping term —z(f) when 7 is sufficiently short. This term even renders the
system unstable.
Example 2.3.7 Consider the delay differential equation

i(0)+ci)+x(t-1)=0, xeR, (2.3.15)
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where ¢>0. This is a simple model for the damped linear oscillators with a time
delay 7 in the stiffness term x(¢r). If =0, Eq. (2.3.15) has no periodic solution
and any perturbed motion of the oscillator from its equilibrium x=0 is damped
out. When 7>0, however, Eq. (2.3.15) may have a periodic solution because the
corresponding characteristic equation has a pair of pure imaginary roots for a
proper choice of (c,7). For instance, when ¢=0.0998 and r=0.1, the character-
istic equation of Eq. (2.3.15) has a pair of conjugate imaginary roots +0.9975 . In
this case, the effect of damping term cx(f) is approximately balanced off by
—i(¢) owing to the delayed stiffness term x(¢z—7) . Hence, the harmonic oscilla-
tion becomes possible.



3 Stability Analysis of Linear Delay Systems

From the viewpoint of mathematicians, the stability problem of a linear delay dy-
namic system has been solved because a number of sufficient and necessary con-
ditions have been available for the stability analysis when the time delays are
given. See, for example, (Stépan 1989), (Qin et al. 1989) and (Hassard 1997). As
presented in Section 2.2, however, these conditions do not show any explicit rela-
tionship among the system parameters that the engineers are interested in. When
those conditions are used, the stability test usually involves very tedious computa-
tion such as solving transcendental equations or computing the spectrum of op-
erators.

The stability criteria for linear delayed dynamic systems can be classified into
two catalogues according to whether the stability of system depends on the time
delays or not. In the latter case, the system is asymptotically stable for arbitrary
time delays. That is, the system stability is independent of time delays. In this
case, the stability criteria are relatively simple. If the stability criteria for given
time delays are considered, things become much more complicated.

This chapter is devoted to the stability analysis, which can be completed by
using computer algebra, for the linear dynamic systems with single or multiple
time delays in state feedback. At first, the analysis of delay-independent stability
of single-degree-of-freedom systems with two time delays is presented as an il-
lustrative example. Then, the analysis is made for the delay-independent stability
of high dimensional systems with two time delays on the basis of generalized
Sturm criterion for polynomials. Afterwards, the stability switch is analyzed in
detail for high dimensional systems with an increase of a single time delay. To
show the effectiveness of the approaches to high dimensional systems, the stability
analysis is made for various examples in engineering, including a model of tall
building with an active tendon for vibration reduction, an active suspension of
ground vehicle and a four-wheel-steering vehicle with driver's retardation taken
into account.
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3.1 Delay-independent Stability of Single-degree-of-
freedom Systems

This section deals with the single-degree-of-freedom systems with delayed state
feedback discussed in Subsection 1.1.1. For simplicity, we can first re-scale Eq.
(1.1.4) by using the same procedure from Eq. (1.1.10) to Eq. (1.1.12), and then
study the dynamic equation of system as following

#(0)+286() + x(O) =ux(t—1,) +vi(t=1,) + £ (£), @3.1.1)

where {20 is the damping ratio as usual, , # and v the dimensionless feedback
gains, 7,20 and 7,>0 the dimensionless time delays in the displacement feed-
back and velocity feedback, respectively.

To check the asymptotic stability of the steady-state motion x(z), it is suffi-
cient to study the variational equation that governs the small perturbation Ax(z)
near x(f)

AF(t)+ 2NH(t) + Ax(t) =ulx(t — 7, )+ vAR(t —17,) . (3.1.2)

Substituting the candidate solution Ax(¢)=ae” into Eq. (3.1.2) yields the follow-
ing characteristic equation

D(A,7,,0,)=A +2LA+1—ue *" —vie*2 =0. (3.1.3)

Given two time delays 7, and 7, , Eq. (3.1.2) is asymptotically stable if and only
if all the roots of Eq. (3.1.3) have negative real parts.

If there is no time delay in the state feedback, Eq. (3.1.3) becomes a quadratic
equation in A

D(2,0,0)= A" +(2¢ -v)A+(1-u)=0. (3.1.4)

In this case, the asymptotic stability condition given by the Routh-Hurwitz crite-
rion is
u<l, v<24. 3.1.5)

Except for this trivial case, Eq. (3.1.3) is transcendental. It is almost impossible to
check the system stability by solving Eq. (3.1.3) for the infinite number of roots.
Thus, it is not an easy task to give simple stability criteria for the delay differential
equations like Eq. (3.1.1).

In general, the criteria of delay-independent stability are much simpler than
those for the stability of a system with given time delays. Hence, they have re-



3.1 Delay-independent Stability of Single-degree-of-freedom Systems 61

ceived much attention over the past decades, see, for example, (Qin et al. 1989)
and (Gopalsamy 1992). As the simplest case, the dynamic systems with a single
time delay have been intensively studied and the delay-independent stability crite-
ria in terms of pure mathematical parameters have been given in (Qin et al. 1989)
and (Mori and Kokame 1989). Yet, fewer successful studies have been made for
the dynamic systems with multiple time delays and no practical stability criterion
has been available. For instance, the sufficient condition given in (Wang and
Wang 1993) requires very tedious computation for exponential matrices, while the
concise criterion proposed in (Wang and Wang 1996) is not applicable to the dy-
namic systems with multiple time delays.

A practical problem in the design of feedback controllers is how to select the
appropriate feedback gains # and v such that the controlled dynamic systems are
asymptotically stable if any time delays exist in the controllers and actuators.
Sometimes, the feedback gains # and v might have been designed according to a
control strategy, say, LQG, but the time delays in the controller and actuators were
not taken into consideration in the previous design. One may wonder whether the
controlled dynamic system is asymptotically stable and robust with respect to the
variation of the feedback gains. However, the archival publications dealt with the
stability criteria in terms of pure mathematical parameters only, instead of the
feedback gains.

The aim of this section is to find the practical criteria of delay-independent sta-
bility for the damped vibrating systems governed by Eq. (3.1.1) when two time
delays appear in the state feedback. A sufficient and necessary algebraic condition
of delay-independent stability is derived first. Then, an equivalent condition of
delay-independent stability in terms of feedback gains # and v is discussed and
the region of delay-independent stability on the plane of (u,v) is given.

3.1.1 Stability Criteria

As stated in Theorem 2.2.6, Eq. (3.1.1) is delay-independent stable if all the roots
of D(A4,0,0) have negative real parts and the critical condition D(iw,r,,7,)=0 has
no real root @ for any given 7, and z, . In what follow, we look for the necessary
and sufficient condition, under which D(iw,r,,7,)=0 has no real root @ for any
given 7, and 7, .

It is obvious from Eq. (3.1.3) that D(iw,r,,7,)=0 gives

2

2
|1—a)2 +2igw' =gexpior, —ior,)+ival (3.1.62)
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or
|1—a)2 Jr2i§’a)|2 =|u +ivwexp(ior, —iorT, )|2 . (3.1.6b)
Both Egs. (3.1.6a) and (3.1.6b) have the same form
(1~0*)* +(2¢w)’ =u’ +(vo)’ +2uvwsin(wr, -01,) 3.1.7)
namely,
o' +(4¢7 -2-v) o +1-u* =2uvwsin[o(r, - 1,)] . (3.1.8)

If D(iw,r,,7,)=0 has real root @ for some 7, and 7, , so does Eq. (3.1.8).
Conversely, if there are @ # 0, 7, and 7, satisfying Eq. (3.1.8), then either Eq.
(3.1.6a) or Eq. (3.1.6b) holds. Thus, there exists a non-negative number #eR
such that either
1-0* +2ilo=exp(-iwb) {uexplia(z, —1,)]|+ive}, O+7,-7,20 (3.1.9a)
or

1-w* +2ilw=exp(-iwd) {u+ivwexplio(r,-1,)]}, 0+1, -7,20 (3.1.9b)

is true. This fact leads to D(iw,0-r1,+7,,0)=0 or D(iw,0,0-7,+7,)=0. That is,
for given time delays 7,=0+71,—-7,>0, 7,=0 or ©,=0, f,=0+1,-1,20,
D(iw,?,,7,)=0 holds and gives a contradiction. If w =0 satisfies Eq. (3.1.8),
then u = —1. There follows D(0,7,,7,)=2=%0.

The above analysis can be summarized as the following conclusion.

Theorem 3.1.1 Given two time delays 7,20 and 7,>0, D(iw,r,,7,)=0 has no
real root @ if and only if Eq. (3.1.8) has no real root @ other than zero.

As both sides of Eq. (3.1.8) are even functions in w, it is sufficient hereinafter
to study the case of @>0 only.

(1) The case of equal time delays
When 7,=7,=7, Eq. (3.1.8) becomes
o' +po*+q=0, (3.1.10)
where
p=4act-2-v*, g=l1-u’. (3.1.11)

Equation (3.1.10) has four roots in the form
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1, _ {1 -
W ,= 5(—p+\/p2—4q), ©; 4=~ —2—(—p+\/p2—4q). (3.1.12)

The number of real roots among them depends on the combination of parameters

pand g as follows.
(a) p?-44g<0 : none of the roots is real.
(b) p?-4g=0, p>0, ¢>0: none of the roots is real.
(c) p*-4g=0, p<0, g>0: all of the roots are real.
(d) p*-4¢=0, g<0: the roots @, and w, are real.

q

(d) (d)

Fig. 3.1.1. Delay-independent stable region, containing the non-negative half p -axis, on
the plane of (p,q) when 7, =7,.

These cases are shown on the plane of (p,q) in Fig. 3.1.1, where the shaded
region represents the parameter combinations that guarantee the system stability
independent of time delays. Remind that Eq.(3.1.10) could have a solution @ =0,
we see that the delay-independent stability conditions can be simplified to

p=20, g>0 or p<0, p*-4g<0. (3.1.13)

(2) The case of unequal time delays

To study the case when 7,#7,, three functions are defined as following
gw)=0'+pw’+q-rosinjo(r,-1,)],

o, (3.1.14)

@,

_‘g(a))za)4 +po’ +q—|r
B@)=0"+po’+q+|r

where r=2uv . Itis obvious that g(0)=g(0)=g(0)=¢ and for all ©=0

g@)=g(@)<g(w). (3.1.15)
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In the analysis of delay-independent stability, the time delays 7, and 7, can be
arbitrary non-negative numbers. So, they can be chosen such that g(w)=g(w) or
g(w)=g(w) for any given >0 . Thus, g(®) has no root on (0, +0) if g(®)>0
for all >0 ,or g(w)<0 for all @>0. However, the second case is obvioﬁsly im-
possible since the leading coefficient of g(w) is positive, which implies that
g2(»)>0 holds for sufficiently large positive @ .

Now, we derive a condition for checking g(@)>0 subject to w>0. The de-
rivative of g(w) with respect to @ reads a

g(@)=40’+2po-|r|. (3.1.16)

To look at the roots of this cubic polynomial, a new parameter is introduced as
following

5:(—161)3 +(§)2 . (3.1.17)

The solution of polynomial g (w) falls into one of the cases.
(a)If 6>0, g'(w)=0 has one real root and a pair of conjugate complex roots

=a+f, ,=ab,+p0,, o,=abd,+po, (.1.18)

azgf%ﬁ/g, ﬂ:3/%_\/g, glz‘“zi‘/g, 92:‘1‘2“/5. (3.1.19)

(b) If 6=0, g'(@)=0 has three real roots

a)=23\/H W, =@ =—3H (3.1.20)
: g 0= g 1.

(c)If 6<0, then p<0 and g'(w)=0 has three real roots

a)I:Z‘f—%cos(%), a)2:2‘,—%cos(§+23—n), w3:21/—%cos(§+2—n), (3.1.21)

where O<y <7 is defined by

cosy=— /(p‘f Ly (3.1.22)

In this case, both @, <0 _and @, <0 _are true since we have y/3+2n/3e(2n/3, n)
and y/3+4rn/3e(4n /3, 5n/3).

where
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The above analysis indicates that only the root @, is positive in these cases.
This fact, together with the inequality g'(0)= —lr|$0 , leads to
g'(w)<0 for we(0, ;) and g_'(a))>0 for we(w,,+x). (3.1.23)
This implies that g(w,) is the minimum of g(w) on [0, +o0). Hence, g(®)>0
holds true for all @>0 provided that g(®,)>0. If this is the case, g(@)>0 holds
for all >0, 7,,r,20.
In summary, the delay-independent stability criterion can be stated as follows.

Theorem 3.1.2 Equation (3.1.1) is delay-independent stable for any time delays
7, and 7, if and only if either of the following two sets of inequalities holds

p=0, qg=0, g(@)>0, (3.1.24a)
p<0, p’-49<0, g(@)>0, (3.1.24b)

where g(w) is defined in Eq. (3.1.14) and

Nl W +3M_\/E , 620,
3 8 (3.1.25)
) f_ L os”, 5<0.
6 3

Given a system, the stability test based on Theorem 3.1.1 is an easy task includ-
ing simple algebraic computation only. Table 3.1.1 shows 4 examples.

)=

Table 3.1.1. Delay-independent stability of 4 illustrative examples

Example System Parameter  Stability Test Conclusion

3.1.1 $=0.10 p=-1.963, g=0.9900 Delay-independent stable
u=0.10 p’—49=-0.1086
v=0.05 2(w,)=0.0172

3.1.2 ¢=0.10 p=-1.963, g=0.9100 Not delay-independent
u=0.30 p'-4¢g=02114 stable
v=10.05 g(®,)=0.0826

3.1.3 ¢=0.50 p=-1.250, g=0.7500 Not delay-independent
u=0.50 p’—4q=-1.436 stable
v=0.50 g(w,)=—0.0584

3.14 ¢=10.50 p=-1.090, g=0.6400 Delay-independent stable
u=0.60 pr-4q=-1372

v=10.30 g(@,) =0.0637
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3.1.2 Stability Criteria in Terms of Feedback Gains

In this subsection, we study all possible combinations of feedback gains that guar-
antee the delay-independent stability of Eq. (3.1.1). Let D denote the region of
those combinations on the plane of (¥,v), and D, the region where the corre-
sponding system with identical time delays is delay-independent stable. For sim-
plicity, we refer to these regions as the regions of delay-independent stability. It is
obvious that (0,0)eDcD, if {>0.

(1) The case of equal time delays

By substituting Eq. (3.1.11) into Eq. (3.1.13), we have

p=47-2-v* 20, g=1-u*>20, (3.1.26a)
or
p=47-2-v*<0, p’-4g=(4{*-2-v*)*-4(1-u*)<0; (3.1.26b)
namely,
u? <1, vi<4sr-2, (3.1.27a)
or
VI>40%-2, 4uP+(v1+2-447) <4, (3.1.27b)

The second inequality in Eq. (3.1.27a) and the first inequality in Eq. (3.1.27b) are
a pair of contradictory bounds for v*. To gain an insight into the second inequal-
ity in Eq. (3.1.27b), we can find all intersections of the curve

P(u,v)=4u"+(v* +2-47)* -4=0 (3.1.28)

with the axes of u and v. They are

u=0, v={i2§’ . (3.1.29a)
+2,/0%1,

v=0, u=+2041-¢2 . (3.1.29b)

From Eq. (3.1.29), it is easy to see that this curve, like an ellipse, has a pair of in-
tersections on the u and v axes respectively, if and only if the system is under-
damped in the usual sense. Once the system is over-damped, the curve has no in-
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tersection on the u axis, but four intersections on the v axis. In fact, two separated
ellipses appear in this case. Imposing

M=4v(v2+2—4§2)=0, (3.1.30)
ov
we can determine the extreme values of # on these two ellipses
u==l1. (3.1.31)
From the above analysis, the criterion for delay-independent stability is deter-

mined for different damping ratios as following and the corresponding regions of
delay-independent stability is shown in Fig. 3.1.2.

(a)If 0<¢ <142, D, is surrounded by an ellipse. That is,
4t +(V+2-407) <4 (3.1.32)
(b) If 1/4/2<(<1, the boundary of D, is composed of two arcs of an ellipse
and two sides of a rectangular, which are described by
ur<l, v*<4l*-2, (3.1.33a)
or
4 Y

4 +(V +2-407) <4, Vi>ALT-2. (3.1.33b)

(c) If £'>1, the boundary of D, consists of two sides of a rectangular and two
arcs from two ellipses governed by Eq. (3.1.33), too.

| =

Fig.3.1.2. Regions of delay-independent stability on the plane of (u,v) for different
damping ratios when 7,=7, ; a. 0<¢ <U\2 , b. VA2 <¢<l, e &>1

Theorem 3.1.3 The region D, of delay-independent stability of Eq. (3.1.1)
with equal time delays is symmetric with respect to both # and v axes and is
connected and bounded in the rectangle {(u,v)|[u|<1,|v|<2¢{}.

Hencey it is.the.damping,that.makes,the delay-independent stability possible.
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(2) The case of unequal time delays

If 7,#7,, the boundary of D yields g(w,)=0. However, it is almost impossible
to solve g(w,)=0 for the explicit exp;ession of the boundary. Thus, a qualitative
analysis of region D is made here. As p,q,|r|, p>—4q,7 and g(w,) are even
functions in » and v, the region D should be symmetric with regpect to both u
and v axes. So, attention is paid only to the first quadrant of (u,v) plane.

For u>0 and v>0, it is easy to verify that

P _y, % - u<o, 2(ag-p*)=—8u<o,
Ou ou Ou (3.1.34)
%pz—zvso, %:0, %(4q—p2)=4pv§0 with p<0
and
0 olr
ig((ol):g’(wl) ! {wlz op f 94 a)lﬂ:—Z(u+va)l)g(),
ou— - Ou ou Ou ai/ll (3'1.35)
0 N0 op o0q O
é;g(a)])z_g_((ol) 6v1 +o,” . r 5 a)l§=—2wl(u+va)l)30,

since g'(@,)=0 . These inequalities imply that if a given system with £,u, and v,
is delay-independent stable, so is the system with ¢, v, and O<u<u, or with
¢, u, and 0<v<y,.

Example 3.1.5 As testified in Example 3.1.1, the system with £=0.1, ¥=0.1
and v=0.05 is delay-independent stable. According to the analysis above, the
system with £=0.1,v=0.05 and 0<u#<0.1, or with £=0.1, #=0.1 and
0<v<0.05 is delay-independent stable, too.

Moreover, Eq. (3.1.35) leads to

* (@)
A 1
% :_Gg—_:__<0 . (3.1.36)
Ulg(a=o Eg(a),) @

Hence, the boundary defined by g(,)=0 on the first quadrant of (u,v) plane is a
simple curve. Along the boundary, v decreases with an increase of u .

From the above analysis on D, another stability criterion independent of time
delays is also available.

Theorem 3.1.4 The region D of delay-independent stability of Eq. (3.1.1) with
unequalytimerdelayspispalsopsymmetricpwith respect to both # and v axes and is
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connected in the bounded D, . Let U={(u,v)|[u|<a,,||<a,}, then it is sufficient to
check (a,,a,)eD in order to make sure that U D holds.

Example 3.1.6 Consider a system with {=0.5. From Theorem 3.1.2 and Ex-
ample 3.1.4, it is obvious that [-0.6, 0.6]x[-0.3, 0.3]c D holds. This rectangular
can be broadened in D by further numerical tests. For example, we can first fix
u=0.6 and choose a v larger than 0.3, say v=0.5. Direct computation gives
p=-1250, q=0.64, p*—4q=—0.9975 and g(w,)=-0.2567. This indicates that
the system is not delay-independent stable and such a choice of v is too large. If a
v less than 0.5, say v=0.34, is taken as the second try, then p=-1.1156,
g=0.6400, p*-4g=-1.3154 and g(w,)=0.0073. Thus, the system is delay-
independent stable and a larger rectangular [-0.6, 0.6]x[-0.34, 0.34]c D is ob-
tained.

0.1 1
0.05 0.5
v oo Delay-independent stable v o Delay-independent stable
1
region for 7 #7, region for 77T,

-0.05 -0.5

0.1k - - =

-0.1 -0.05 0 0.05 0.1 -0.88 -0.4 0 04 0.88
u u

Delay-independent stable Delay-independent stable

region for 7%,

region for 77T,

K] 05 0 05 1

Fig. 3.1.3. Regions of delay-independent stability on the plane of (u,v) for different
damping ratios; a. =0.05,b. {=0.5,¢. {=1.0,d. {=1.5
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For a given system, the region of delay-independent stability can be determined
by using a simple short routine involving similar tests in Example 3.1.6. The typi-
cal regions of delay-independent stability for two under-damped systems, the
critically damped system and an over-damped system are shown in Fig. 3.1.3,
where the regions bounded by solid lines and curves are for distinct time delays
and those with dashed boundaries are for equal time delays, respectively.

3.2 The Generalized Sturm Criterion for Polynomials

As shown in Subsection 3.1.1, the key step in testing the delay-independent stabil-
ity of a system is to determine the number of real roots of a polynomial. Given a
real polynomial with constant coefficients, the classical Sturm criterion gives a
full answer to this problem. However, it does not work if the polynomial of order
larger than 3 involves any unknown parameters. This case often happens when the
delay-independent stability of a high dimensional system is analyzed in the design
phase. Fortunately, the complete discrimination system for polynomials recently
developed in (Yang et al. 1996a, 1996b), and is called the generalized Sturm crite-
rion hereafter, offers a powerful tool to determine the number of a polynomial
with unknown parameters. To acquire a good understanding of the theory, a brief
review is made to the classical Sturm criterion first, and then some basic facts
about the generalized Sturm criterion are presented in this section.

3.2.1 Classical Sturm Criterion

Definition 3.2.1 Given a real number sequence /,,/,, -/, under the condition
Ll,---1,#0, the sequence [ s,5,, -5, ] with s,=sgn(l;), i=1,2,---,n is called the
sign table of the sequence. The number of variation of signs of the sequence is the
number of negative pairs in /\/,, L1, ..., I,,1,.

As a simple example, the sign table of the sequence 1,3, -2, 1, -4, ~10,-1, 4, 2
is [1,1, -1,1, -1, -1, -1, 1, 1], and the number of variation of signs of is 4.

If a sequence contains any zeros, the number of variation of signs is defined as
the number of variation of a new sequence revised by removing the zeros. For in-
stance, the number of variation of signs of sequence -3, -5,0,3,0,2,-6,0 is 2,
while the number of variation of signs of sequence 0, -3, 2 is 1.

Definition.3.2.2.Suppose.that_.f(x).is a real polynomial without repeated
roots. A sequence of real polynomials
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SoxX)=f(x), fi(x), -+ f(x) (3.2.1)

is called the Sturm sequence of polynomial f(x) if the following four conditions
hold.

(a) Any two neighboring polynomials in Eq. (3.2.1) have no common roots.

(b) The last polynomial f,(x) has no real roots.

(c) If there exists an integer k yielding 1<k<s-1 such that f,(a)=0, then
Jia (@) frn(@)<0;

(d) If f()=0, then, there exists a sufficiently small positive number & such
that f,(k)f,(k)<0 for ke(a—¢, a), and fy(k)fi(k)>0 for ke(a, a+ég).

Upon the basis of these concepts, the famous classical Sturm criterion can be

stated as following.

Theorem 3.2.1 Assume that a real polynomial f(x) has no repeated roots and
has p real roots on the interval (a, 8), satisfying f(a)f(B)=0. If the numbers
of variation of signs of the sequences

ﬁ) (a)r.fi ((Z),‘ ' 'afs (a) (332a)

Jo(BL L (B () (3.2.2b)

are v(a) and v(f) respectively, then p=v(a)-v(p).

Some rules are available to construct the Sturm sequence of a polynomial
without repeated roots. What follows is the most popular way. Let f,(x)=f(x),
and f(x)= f'(x) be the derivative of f(x). Dividing f(x) by fi(x) gives the
polynomial f,(x) from fy(x)=f (x)q,(x)—f>(x). The other polynomials in the
Sturm sequence can be constructed in the same way, namely,

f;c(x):f;wl (x)qk+l (x)_ﬁc+2 (X) s OSk<S—2 ’ (323)

except for the last one by f,_(x)= f;(x)g,(x).

Because only the signs of the Sturm sequence are used in the applications of the
Sturm criterion, all the positive factors can be dropped out at each step of con-
structing a Sturm sequence.

Example 3.2.1 Consider a real polynomial

F(x)=x+5x* +5x° 5% -5x—7 . (3.2.4)
The corresponding Sturm sequence can be constructed as follows. Let
f,()=f(x)=x"+5x* +5x* - 5x* -5x -7, (3.2.53)

£()=F(0)/5=x" +4x* +3x> - 2x-1. (3.2.5b)
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Dividing f,(x) by f,(x), we arrive at f,(x)=f; (x)(x+1)=-2(x?+1)(x+3). Be-
cause 2(x”+1) is a positive factor, we can take

fr(x)=x+3. (3.2.5¢)

Dividing f,(x) by f,(x), we have f;(x)=f,(x)(x*+x?—2)—(-5). There follows
S3(x)==5. (3.2.5d)

As a result, the Sturm sequence of f(x) consists of four polynomials f,(x),
Hi(x), fo(x), f3(x).

To look at the relation between the real roots of f(x) in Eq. (3.2.4) and the
number of variation of signs of its Sturm sequence, some cases are listed in Table
3.2.1. The Sturm criterion enables one to see that f(x) has only one real root
on (-, +o0) and the root falls into the interval (1, 2) .

Table 3.2.1. The sign tables of the Sturm sequence of Eq. (3.2.4)

X Jo(x) Six) fr(x) f3(x) v
—00 -1 1 -1 -1 2
0 -1 -1 1 -1 2

-1 1 1 -1 2
2 1 1 1 -1 1
+00 1 1 1 -1 1

If f(x) has any repeated roots, the last polynomial f,(x) in the Sturm se-
quence is the (non-constant) greatest common divisor of f,(x) and f,(x). That
is, fi(x)=d(x)g,(x), where d(x)= g.c.d(f(x),f'(x)) and the leading coefficient
is set to be 1, while g,(x) is the leading coefficient of f,(x). Let

fi(x)=d(x)g,(x), k=0,1,2,---,5. (3.2.6)
Then, g,(x) is a real polynomial without repeated roots, and g,(x), g,(x),...,
g,(x) is the Sturm sequence of g,(x). Therefore, the Sturm criterion still works

for the polynomials with repeated roots in the sense that each of the repeated roots
is counted only once.

3.2.2 Discrimination Sequence

In the generalized Sturm theory, the discrimination sequence plays the same role
as the Sturm sequence in the classical Sturm criterion. The discrimination se-
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quence can be constructed by using the so-called Bezout matrix, which is a useful
concept in the theory of polynomials and can be defined in different ways.
To introduce the concept of the Bezout matrix, two real polynomials of order n

are considered as following
f(X)=ax"+ax"" ++a, x+a,, (3.2.7a)
g(x)=byx" +bx"" +---+b,_ x+b,. (3.2.7b)
They can be recast in the form
fO)=f(0)x" + f(0), g(0)=g,(x)x" +g,,(x) (3.2.8)
where

n—l-i

f1®)=apx" +ax" 4 a,
fa(x)= an7i+|xiil +an—i+2xi_2 +--+a,,
g,(0)= byx" +bx"" +4b, ,,
8 (X)= b, X +b, X b, (3.2.9)
Furthermore, a polynomial is introduced as following

fil (x) fi2 (x)
g.(x) g,(x)

n

=Y dx" . (3.2.10)

A

D; (x)=

The Bezout matrix 1s defined as the coefficient matrix of n polynomials

Puoin (X)), i=1,2,,--- n in the form

dll dlZ dln
d2| dzz dZn (32 11)
dnl an dnn

Definition 3.2.3 The discrimination matrix of f(x) is the Bezout matrix of
f(x) and g(x)=0-x"+ f'(x), and denoted by discr(f) .
The discrimination matrix of f(x) can be proved in an explicit form as below

discr(f)=(c, ;1) b j=L-mn,

min(i, j)-1
¢, =[n-max(i, Hla,a,~ D (i+j-2p)a,a,,_,, (3.2.12)

p=0

(S
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where a,=0 if k<0 or k>n.
Definition 3.2.4 The discrimination sequence of f(x) is defined as the princi-
pal sub-determinant sequence taken in order and denoted by

D,(f), D,(f),---, D, (f). (3.2.13)

Algorithm 3.2.1 The following short MAPLE routine discr suggested in (Yang
et al. 1996b) can be used to derive the discrimination sequence of a polynomial

automatically.
> discr:=proc (poly,var)
> local £, g, tt, 4, bz, i, ar, j, mm, dd:
> f:=expand (poly) : d:=degree (f,var):
> g:=tt*var*d+diff (f,var) :
> with(linalg) :
> bz:=subs (tt=0,bezout (f,g,var): ar:=[ ]:
> for i to d do
> ar:=[op(ar),row(bz,d+1-i..d+1-1i)] od:
> mm:=matrix(ar): dd:=[ ]:
> for j to d do
> d:=[op(dd) ,det (submatrix(mm,1..3,1..3))] od:
> dd:=map (primpart,dd)
> end:

The repeated roots of a polynomial f(x) are determined exactly by the greatest
common divisor of f(x) and f'(x). The sequence of sub-resultants of f(x) and
f'(x) are defined as the sequence of multiple order factors of f(x), and is denot-

edby 4¢(f),4:(f), > 4,,(f).

3.2.3 Modified Sign Table

To state the generalized Sturm criterion in a compact form, it is helpful to intro-
duce the concept of modified sign table first.

Definition 3.2.5 Given a real number sequence /., --,/, with [,#0. The
modified sign table [ &, &,, -+, €,] of [ ), 85, -+, 5, ] with s,=sgn(/;), i=1,2,--n
is a table generated in line with the rules as following.

(a) For any segment [s,,5;,,5:.2, -5, ] of a given sign table with s,#0,
Siv=Sua =Sy Suga 0@ i #0,  [Si05 Sia, o0 Sija ] 18 replaced by

[_Sia =85 85 Sis 855 =85 S5 Sis ]
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(b) All the other entries in the sign table are unchanged.

For example, the modified sign table of [1, -1, 0, 0,0, 0, 1, 0, 0, 0, -1, 0] should
be[l,-1,1,1,-1,-1,1,-1,-1, 1, -1, 0] according to these two rules.

3.2.4 Generalized Sturm Criterion

On the basis of discrimination sequence and the corresponding modified sign ta-
ble, the generalized Sturm criterion can be summarized as following, see (Yang et
al. 1996b).

Theorem 3.2.2 Let f(x) be a polynomial of order n, D,(f),D,(f),--D,(f)
be the corresponding discrimination sequence, and o;=D,;, i=1,2,---,k be the /-
th nonzero term of the discrimination sequence, where o,=1. Let ¢,=0,
r=q,—q:—-1, i=0,1,2,--- k—1. Assume that the number of variation of signs in
the modified sign table is s. If D,(f)#0and D,,(f)=0, m>/, then the following
facts are true.

(a) The number of distinct pairs of conjugate complex roots of f(x) is s.

(b) The number of distinct real roots of f(x) is [-2s, which satisfies

k-1
-2s= 3 (-)"sgn(CL). (3.2.14)
i=0, r; are even O-i
(c) a is a root of f(x)with multiplicity p if and only if it is a root of
4,_,(f) with multiplicity p—1.
(d) Except for some positive factors, Di(f), D(f), -, Di(f) is the discrimi-
nation sequence of polynomial f/g.c.d(f,f"), which has no repeated roots.

Example 3.2.2 Let f(x)=x"-x"*+2x"-x""—x’+x*+x’-3x*4+3x-1. The
sign table of the corresponding discrimination sequence is [1, 1, -1, -1, -1, 0, 0, 0,
-1,1,1,-1,-1, 1, -1, -1, 0, 0]. Thus, the modified sign table is [1, 1, -1, -1, -1, 1, 1,
-1,-1,1, 1, -1, -1, 1, -1, -1, 0, 0], and the number of variation of signs is 7. As a
result, the polynomial f(x) has two distinct real roots and 7 distinct pairs of
conjugate complex roots. Note the fact that g.c.d(f,f")=x*-x+1, the remaining
two roots of f(x)are a pair of conjugate complex roots repeated to one of the
above 7 pairs.

Example 3.2.3 To ensure that a polynomial of order 6 with positive leading co-
efficient has no real roots, it is necessary to make sure that one of the 14 cases in
Table 3.2.2 holds true.
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Table 3.2.2. 14 possible modified sign tables of the discrimination sequence of a polyno-
mial of order 6 with positive leading coefficient

Di(f)  Dy(f) D;(f) Dy(f) Ds(f) Dg(f) 1=2s

1 -1 0 0 0 0 s=1
1 -1 1 1 0 0

1 -1 -1 1 0 0 §=2
1 1 -1 1 0 0

1 -1 1 1 1 -1

1 -1 -1 -1 1 -1

1 1 1 -1 1 -1

1 -1 1 1 -1 -1

—
[}
—
|
—
—
—
1
—
A
1l
w

b— e e e
]
—
]
—_—
J—
[
—_—
'
[y

Theorem 3.2.2 gives full information about the numbers of real roots and com-
plex roots of a polynomial. It is the case of /=2s for s=1,2,--- that serves the pur-
pose of analysis of delay-independent stability.

3.3 Delay-independent Stability of High Dimensional Sys-
tems

Now, consider the delay-independent stability of a linear dynamic system with two
time delays, the characteristic equation of which takes the following form

D(A,7,,7,)=P(A)+0,(A)e " +Q,(A)e™* =0, (3.3.1)

where 7,20 and 7,20 are the time delays, P(1), Q,(4) and Q,(A) are the real
polynomials under the conditions deg(P)=n>deg(Q,), j=1,2. The system of
concern is delay-independent stable if and only if each of its characteristic roots
has negative real part for all given 7,20 and 7,>0. Since D(A,7,,7,) is analytic
withrrespect torA; 7, and z; - Thusyrany root A=A(r,,7,) of D(A,7;,7,) is con-
tinuous with respect to 7, and 7, . These facts lead to the following theorem.
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Theorem 3.3.1 The linear delayed dynamic system governed by Eq. (3.3.1) is
delay-independent stable if and only if the following two conditions hold true.

(a) The polynomial P(A1)+Q,(1)+0,(A), corresponding to the case 7,=7,=0,
has only the roots with negative real parts.

(b) Equation D(iw,7,,7,)=0 has no real root @ for all 7,>0 and 7,>0.

In general, the Routh-Hurwitz criterion is available to examine the first condi-
tion. What follows is to discuss how to check the second condition. Let

{pR (@)=Re[P(i®)], P, (@)=Im[P(iw)], (33.2)

QjR (w)ERe[QjR (iw)], le (a))EIm[Qﬂ (iw)], j=12.
Eq. (3.3.1) has no roots fiw # 0 for all 7,20 and 7,20 if and only if

PR (0)+ P} (0)-[Q5 (@) + 01 (0)+ 054 (0)+ 05, (w)]
=20z (0)0,; (@)= 0, (@)D, (@)]sin[a(7, —7))] (3.3.3)
=2[Q,,(@)Q,; (@) + 0z (@)Q, (@)]cos[w(7, —7,)]=0

has no non-negative root @ for all 7,20 and 7,20. The two harmonic terms
above can be combined into the one with a phase shift ¢ so that Eq. (3.3.3) be-
comes

PR (0)+P (@) O (@)+07 (0)+ 057 (0)+0;, (@)]

_2\/[Q1R (0)0,,(@)-0,; (@0)QD1x (@) HO\ (@)Q,, (0)+Q, (@0)0, ()] 2
sinfw(r,—7,)+@]=0. (3.3.4)

As Py(o), Q;(®), j=12 are even functions and P (w), Q; (@), j=1,2 are odd
functions respectively, we have

D(0,7,,7,) = Pr(0)+ Q2 (0) + 0,2 (0) (3.3.5)
If @ =0 satisfies Eq. (3.3.4), then P; (0)—[Q7, (0)+Q3,(0)]=0. If in addition
we assume that D(0,7,,7,)=0, then P;(0)=Q,z(0)=Q,,(0) =0, which con-
tradicts the Hurwitz stability of P(4)+Q,(1)+Q,(4). Thus D(0,z,,7,) # 0 for
all given delays 7, and 7, .
Thus, if 7, =7, =7, D(iw,r,,7,)=0 has no real root @ for all >0 if and
only if he left-hand side of Eq. (3.3.3), denoted by F(w),

F(@)=0"" +b,0™" ™ +b,0™" P +---+b,_ 0" +b, (3.3.6a)

has no real roots other than zero. If 7, #7,, an even function G(w) is defined as
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G(w)=P; (0)+ P (0)-{0% (@)+0], (0)+03 (0)+03, ()]

_ZJfQIR ()0, (@)-0,; (0)Q; (@) HO\ (0)Q,; ()40, (@)D (w)]* .(3.3.6b)

Hence by following the same routine in the proof of Theorem 3.1.1, we see that
Eq. (3.3.4) has no non-negative roots for all 7,>0 and 7,>0 if and only if G(w)
has no positive roots or G(0) =0, namely, G(®?) has no real roots other than
zero. Obviously, G(w) may not be a polynomial for some systems. This is the
case for some systems with delayed feedback control.

So we arrive at an important theorem for the delay-independent stability.

Theorem 3.3.2 D(iw,r,,7,)=0 has no real root @ for all 7,20 and 7, >0 if
and only if the polynomial F(w) or G(w?) has no real root @ other than zero.

As a result of direct application of the generalized Sturm criterion, Theorem
3.3.2 can be more specifically stated below.

Theorem 3.3.3 D(iw,7,,7,)=0 has no real root @ for all 7,20 and 7,20 if
and only if F(0)=0(G(0)=0), or the modified sign table of F(w) (or G(w?))
is subject to the condition /=2s for s=1, 2, ---, n or 2n, where / and s are the
number of non-zero terms and the number of variation of signs in the correspond-
ing discrimination sequence, respectively.

Based on the above analysis, an approach to the delay-independent stability can
be summarized as below.

Algorithm 3.3.1

(a) Work out Eq. (3.3.3) and the corresponding polynomial F(w) or G(w?).

(b) Determine the discrimination sequence corresponding to F(w) or G(w?)
by using the MAPLE routine discr.

(c) Justify the stability. The system is delay-independent stable if and only if
P(A)+Q,(1)+Q,(A) is Hurwitz stable, and F(0) =0 (G(0) =0) or the condition
[=2s holds for some s=1,2,3,4, -+, nor2n.

Remark 3.3.1 The computation in stability test can be greatly reduced if the
terms in the discrimination sequence are factorized.

In practice, especially in the design phase of a controlled system, it is often de-
sirable to know the delay-independent stable region in a space spanned by the de-
sign parameters. Once the discrimination sequence is obtained and each term is
factorized, each factor can be set to be zero and the corresponding graph can be
plotted. These graphs divide the parameter space into several sub-regions. Each of
them can be easily determined to be or not to be the delay-independent stability
region by checking the corresponding modified sign table. The points satisfy
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F(0)=0(or G(0) =0) may be on the boundary of the stable region. This proce-
dure will be demonstrated through a few examples.

Example 3.3.1 Consider again the single-degree-of-freedom system with two
distinct time delays in the paths of displacement feedback and velocity feedback,
respectively. As shown in Section 3.1, the characteristic equation of the system is

P20 +1-ue ™ —vie™ 2 =0, 1,#1,. (3.3.7)

Comparing Eq. (3.3.7) with Eq. (3.3.1) gives

PA)=2+2LA+1, Q(A)=-u, Q,(1)=—vi. (3.3.8)
According to Eq. (3.3.6), we have
G’ )=0'+po’+ro’*+q, (3.3.9)
where
p=47—v* -2, g=1-u?, r=-2uw] (3.3.10)

We assume hereinafter that v<24 and u<1. These two inequalities are the suffi-
cient and necessary conditions for the asymptotic stability of systems free of time
delay. In order that the system is delay-independent stable, it is sufficient and nec-
essary to make sure that Eq. (3.3.9) has no real roots.

By using MAPLE routine discr, we obtain the discrimination sequence of
G(w?) as following

1, d,, dod,, dd,, d.d,, dd,, dd,, d,d,, (3.3.11)
where
d,=0, d =-p, d,=—p*, d;=—Q2p’-8pq+9r?),
d,=@4p’-48pq+27r’)r, d, =q,
d,=—(27r* +4p°r* —144pgr* 16 p*q+128p*q* -2564°) .  (3.3.12)

Because the expressions of d;, i=0, 1, ..., 6 are even functions with respect to u
and v, it is sufficient to study the case for positive # and v only. When the sec-
ond term and the third term in the discrimination sequence vanish, the first three
terms of the modified sign tables must be 1, -1, -1. If the number of variation of
signs in the modified sign table is 2, the non-zero terms in the modified sign table
has 4 entries to ensure that the system is delay-independent stable. Hence, the
modified sign table of the discrimination sequence should be [1, -1, -1, 1, 0, 0, 0,
0]. When the number of variation of signs in the modified sign table is 3, the sixth
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entry in the modified sign table must be negative to guarantee the delay-
independent stability. Therefore, there are three cases for the modified sign tables
corresponding to the delay-independent stability. They are [1, -1, -1, 1, -1, -1, 0,
0}, [1,-1,-1,1,1,-1,0,0] and [1, -1, -1, -1, 1, -1, O, 0]. In the case when the signs
in the modified sign table changes 4 times, the eighth term in the modified sign ta-
ble should be positive for delay-independent stability, and there are totally 10
cases. Hence, the system is delay-independent stable if and only if the modified
sign table of its discrimination sequence is one of the 14 cases listed in Table
3.3.1.

Table 3.3.1. 14 possible modified sign tables of the discrimination sequence of G(w?) in
the case of delay-independent stability

Di(f) Dy(f) Dy(f) Di(f) Ds(f) De(f) Di(f) Ds(f) I=2s

1 -1 -1 1 0 0 0 0 s=2
1 -1 -1 1 -1 -1 0 0 s=3
1 -1 -1 1 1 -1 0 0
1 -1 -1 -1 1 -1 0 0
1 -1 -1 1 -1 -1 -1 1 s=4
1 -1 -1 -1 1 -1 -1 1
1 -1 -1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 -1 1
1 -1 -1 1 -1 1 1 1
1 -1 -1 1 1 1 -1 1
1 -1 -1 1 -1 -1 1 1
1 -1 -1 -1 1 -1 1 1
1 -1 -1 1 1 -1 1 1

In what follows, two case studies are presented to illustrate the analysis of de-
lay-independent stability.
Case 1 £'=0.25. Substituting ¢'=0.25 into Eqgs. (3.3.9) and (3.3.10) gives
dy=0, d,=175+v >0, d,=—d]<0,
d,=2v*+10.5v* +(10.375-28 u* ) v* +14 u* -3.2813,

dy=Jun [81° +42 v* £(-22.5£120 4% ) v* +(-125.13+168 u )],
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d,= 16V +(112-28 u* ) v* +(166-467 u* +16u* ) v* +
(-105-369.25 1> +560 u* ) v> +14.063-134.06 > +376 u* -256 u° ,
dy=1-u". (3.3.13)

The curve determined by d,=0 is ellipse-like, as shown in Fig. 3.3.1. The inside
of the “ellipse” is governed by d;<0, while the outside by d;>0. The graph of
d,=0 is hyperbola-like, the corresponding sub-region containing the origin is
governed by d, <0, the other parts by d,>0. The graph of d;=0 consists of four
lines, the w-like region and the m-like region are determined by d;<0, and the
other parts by d;>0. Following the present approach, it is possible to see that
only the combination (u,v) in the rhombus-like region that makes the system de-
lay-independent stable. For example, in the rhombus-like region, we have d,=0,
d,>0, d,<0, d;<0, d,;<0, d;>0 and dg>0. Thus, the sign table of the dis-
crimination sequence is [1, 0, 0, -1, 1, 1, -1, 1]. There follows the modified sign
table [1, -1, -1, -1, 1, 1, -1, 1]. This fact indicates that G(w?) has no real roots and
thus the system is delay-independent stable if the combination of (u,v) falls into
this region. In the region inside the ellipse-like region but outside the rhombus-
like region, we have d,=0, d,>0, d,<0, d;<0, d,<0, ds<0 and ds>0.
Hence, the corresponding modified sign table is [1, -1, -1, -1, 1, 1, 1, 1]. There-
fore, the polynomial G(®?*) has 4=8-2x2 real roots and the system is not delay-
independent stable.
Case 2 £=0.75. This damping ratio results in
dy=0, d,=v'-025, d,=—d<0,

dy=2v-1.5v* -(28u* +7.625)v* -2u” +1.9688,
dy= || [8v* -6 v* -(120u” +94.5) v* +(43.875-24 u” )],
d= 16V +4u’ -16)v° H16u* -323 u* -122)v*
+(63+16.75 u* -80u* ) v* +248.06-752.06 u> +760 u* -256 u®
dy=1-u’. (3.3.14)

As analyzed in the previous case, the delay-independent stable region on the plane
of (u,v) can be easily determined by checking the modified sign tables of the dis-
crimination sequence and shown as the biggest rhombus in Fig. 3.3.2. For exam-
ple,-in the smallest_rhombus-like region, we have d,=0, d,<0, d,<0, d,>0,
d,>0, ds>0 and d,>0. Hence, the sign table of the discrimination sequence is
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[1,0,0,1, -1, 1, 1, 1]. There follows the modified sign table [1, -1, -1, 1,-1, 1, 1,
1]. This indicates that G(®>) has no real roots and the system is delay-
independent stable if a parametric combination falls into this region. In the region
inside the biggest rhombus-like region subject to 0.5<[v|<l, we have d,=0,
d\>0, d,<0, d;<0, d,<0, d;>0 and ds>0. Hence, the sign table of the dis-
crimination sequence is [1, 0, 0, -1, 1, 1, -1, 1] and the modified sign table is [1, -
1,-1,-1,1,1, -1, 1]. Thus, the polynomial G(w”) has no real roots and the sys-
tem is delay-independent stable. In the region with the boundary composed of the
rhombus-like curves, we have d,=0, d,<0, d,<0, d;<0, d,>0, ds>0 and
d¢>0. Thus, the sign table of the discrimination sequence is {1, 0, 0, 1, I, -1, 1,
1], the modified sign table is [1, -1, -1, 1, 1, -1, 1, 1] and s=4. Thus, G(®w?) has
no real roots and the system is delay-independent stable if the parameter combina-
tion falls into this region. On the curves plotted by d,=0 or d;=0 or d,=0, the
sign table is 1, 0,0, 0,0, 1,-1, 1] or [1,0,0,1,0,0,-1, 1] or [1,0,0,1, 1, 0,0, 1].
There follow the modified sign tables [1, -1,-1,1, 1, 1,-1, 1] or [1, -1, -1, 1, -1, -
1,-1,1]or [1,-1,-1, 1, 1, -1, -1, 1], respectively. Hence, the system is also delay-
independent stable on these curves. As a result, the system is delay-independent
stable in the whole biggest rhombus-like region.

0.5

Fig. 3.3.1. The rhombus-like region of de- Fig. 3.3.2. The delay-independent stable re-
lay-independent stability on the plane of gion on the plane of (w,v) is the biggest
(u,v) when ¢=0.25 rhombus-like region when ¢= 0.75.

Example 3.3.2 A set of delay differential equations has been presented in Sub-
section 1.1.1 to describe the dynamics of a tall structure equipped with an active
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tendon. If the time delays are assumed as 7,=7,=7r and the fundamental natural
frequency is scaled as w, =1, the equations are simplified to

x,(8) = x, (1),
%, (1) = =x,(1) = 28, (1) = x, (O) + £ (2), (3.3.15)
@) =ayx,(t—1)+adx,(t — 1) —ax,(t),

where x, is the modal displacement, x, the modal velocity, x; the control force,
¢ the damping ratio, @>0 the time constant of hydraulic actuator, y and & the
feedback gains of displacement and velocity, f(¢) the external force, respectively.
The corresponding characteristic equation is

A +@+20) 2 +(+2ad)A+a+a(dA+y)e * =0. (3.3.16)

(1) General case

When 7=0, the system is asymptotically stable if and only if the following
Routh-Hurwitz stability conditions hold

a+28>0, 1+y>0, (a+20)ad+2al+)>a(l+y). 3.3.17)

The first inequality here is always true since @ and ¢ are positive.
When >0, it is easy to find that F(®) in Eq. (3.3.6a) reads

F(0)=0°+bo* +b,0" +b,, (3.3.18)
where
by=a’+4{*-2, b,=1-2a*-a’8*+4a’,?, by=a’(1-y?). (3.3.19)
The polynomial F(@) has no real roots other than zero only when M <1. By us-
ing the MAPLE routine discr, we obtain the discrimination sequence
1, —b,, 3bb,-b', ~Tb}b}—9bb,b, +b'b, +3b b, +12b3,
—8b b, +37b,b; b, —84b,b;b, +27b7b, b +b,'b; —4bb, b,
~12bb, ~81b, b} +16b] +108bb2,
by(~16bb; +8bb}b, b} b; +144b,'b, b2 ~216b.b3 -68b b3 b, (33.20)
+8b7b; ~270b7b2b2 +144b, bib,+972b,b,b3~729b} ~166$-216b3b2).

To reduce the computation, it is beneficial to factorize the above six polynomials
as following
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1, d,, dyd,, dd,, d,d,, did,, (3.3.21)
where
dy=-b, d,=b’-3b,, d, =b’b,+3bb,—4b,’,
dy=—(4b’b,— b b, —18bb,b, +4b, +27b,’),
d, =-b,. (3.3.22)

That is, the sign tables of Eq. (3.3.20) can be obtained by computing the signs of
d;, i=0, 1, 2, 3, 4, instead of computing the polynomials in Eq. (3.3.20).

According to Theorems 3.3.1 and 3.3.3, as well as Example 3.2.3, the system is
delay-independent stable if and only if (a) the inequalities in Eq. (3.3.17) hold
true, and (b) the modified sign tables of the discrimination coincides one of the 14
cases of listed in Table 3.2.2.

(2) Case studies

Now, attention is paid to the case when a=2 . Substituting o=2 into Egs.
(3.3.19) and (3.3.22) gives

dy=-2-407<0,  d,=25+125>-32{7+164*,

d,=—646* +(—64¢* +448 7 —240)57 =200
+896¢ 2 ~880¢ * —24y> —48L %y * +2564°,

d,=2565°+(256¢* -2816£ > +1408)5*
+[(115222+576)y-2048£ ¢ +11136£ * ~115204 % +2000]5°
+4096¢* ~16896¢ ¢ +22800¢ * —10000¢
+(1024¢°-3072¢ * +480¢ % +2000)y * -432y°,

d,=4y> -4, (3.3.23)

When £=0, it is easy to know that dy<0, d,>0, d,<0, d;>0 and d,<0.
Thus, the number of variation of signs in the modified sign table [1, -1, -1, -1, -1, -
1] of the discrimination sequence is 1. This implies that the system is not delay-
independent stable since F(@) has 4(=6—2x1) real roots. This fact shows again
that only damping makes the delay-independent stability possible.

For the case when ¢'=0.02 studied in (Zhang et al. 1993), we have

b, =2.0016, b, =—6.9936-45>, b, =4(1-7")e[0,4]. (3.3.24)
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Hence,

d,=-2.0016<0, d, =2.4987x10+126> >0,
d, =—645* -2.3982x10% 6% ~2.4019x10y* —1.9964x10* <0,

dy =2565° +1.4069x10°5* +(5.7646x10* y* +1.9954x10%)5” +
2.0002x10° y* —432y* —3.9964

d, =—b, <0. (3.3.25)

If d;>0 or d;=0, the sign table of the discrimination sequence in Eq. (3.3.21)
is[l,-1,-1,-1,-1,-1]or [1, -1, -1, -1, 0, 0]. In both cases, the number of variation
of signs is 1. Thus, F(w) has 4=6-2x1 or 2=4-2xI1 real roots such that the sys-
tem is not delay-independent stable. Hence, the system is delay-independent stable
if and only if the feedback gains of control satisfy

(a) d3<0,

(b) 1<y, (2+2x0.02)(26 +2x2x0.02+1)>2(1+y).

Because the straight line 1.02(26 +5.08) =1+ y on the plane of (7,5) does not
intersect the boundary d,=0, the delay-independent stable region is governed by
d;<0 only and shown in Fig. 3.3.3.

Another case study can be similarly made for {=0.5 and the corresponding
region of delay-independent stability is shown in Fig. 3.3.4.

0.05

- d=0
0.02

Delay-independent

Delay-independent

)
stable region stable region
-0.02+
-0.05' . L 1. +
-0.05 -0.02 0.02 0.05 -1 -0.5 0 0.5 1

e Y

Fig. 3.3.3. The delay-independent stable re-  Fig. 3.3.4. The delay-independent stable re-
gion of a tall structure with active tendon on  gion of a tall structure with active tendon on
the plane of (7,0) when a=2and ¢ =0.02___ the plane of (y,6) when a=2and ¢ =0.5
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3.4 Stability of Single-degree-of-freedom Systems with
Finite Time Delays

As analyzed in Sections 3.1 and 3.3, it is very restrictive for a controlled system to
be delay-independent stable. For instance, the region of delay-independent stabil-
ity of Eq. (3.1.1) is always bounded in the rectangular {(u, v)| [u|<1,]v|<24} on the
plane of (u,v). The region is very small since most mechanical systems are
slightly damped. In practice, the stability of many controlled systems is only re-
quired for bounded time delays, especially for the short time delays on a bounded
interval.

This section, therefore, deals with the system stability when two finite time de-
lays are given. By separating the real and imaginary parts of the critical condition
D(iw,r,,7,)=0 , we have

Re[D(iw,7,,7,)]=1-0* —ucoswr, —vosinwor, =0, (34.1)
Im[D(iw,,,7,)]=2{w+usinwr, —vocoswr, =0. o
Solving Eq. (3.4.1) for u and v yields
_ (I-0*)coswr, - 2lwsinwr,
cos[w(r,—7,)] ’ (3.42)

_ (I-w*)sinwrt, + 2{wcoswr,

wcos[o(r,—7,)]

On the plane of (u,v), Eq. (3.4.2) gives the transition set where at least on¢ char-
acteristic root of Eq. (3.1.3) changes the sign of real part. As both # and v are
even functions in frequency @, the transition set will be discussed on the semi-
infinite interval we[0, +) only.

3.4.1 Systems with Equal Time Delays
If r,=7,=7, Eq. (3.4.2) becomes

{u=[(1—w2)coswr—24wsinm]’ (343)

v=[(1-0*)sinor+2lwcoswr]/ 0.

Thus, the transition set is a continuous curve C, on the plane of (u,v) when the
parameter @ varies on [0, +o0). It is easy to find from Eq. (3.4.3) that the curve
C, starts from the point 4=(1,2{+7) on the plane of (#,v). As shown in Fig.
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3.4.1, the curve C, becomes complicated and intersects itself if the time delay is
long enough.
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Fig. 3.4.1. Transition sets on the plane of (u,v) at {'=0.05 for various equal time delays

From the viewpoint of an engineer, one may wonder the critical time delay z,,,
with which the curve C, just intersects itself at (1,2{'+7,) on the plane of
(u,v) . According to Eq. (3.4.3), such a time delay yields

(1—wz)c?swrm —2¢wsinor, =1, (3.4.4)
(1-w”)simwr,+2{wcoswr, =(2§+7,,)w.
This condition can be recast as
tan(wr, +9)=(2{ +7,,)w, @=tan - 124@2 . (3.4.5)
-

In addition, the self-intersection of curve C, at (1,2{+7,) implies that Eq.
(3.1.10) has two different positive roots when u=1 and v=2{+r, . From Egs.
(3.1.11) and (3.1.12), these two roots are

DEOGy==p= 2 +4(7, +2 . (3.4.6)
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Substituting @ in Eq. (3.4.5) with @, yields

tan(z,, ,/r; +4lT, +2+9)=(2(+1,, ),/ 244l 42,
» 2{“ rfn +447,+2

1-(z2+4¢7,+2)

3.4.7)
@=tan

Solving Eq. (3.4.7) numerically for the minimal positive root, we obtain the criti-
cal time delay for given damping ratio. As shown in Fig. 3.4.2, the critical time
delay decreases with an increase of the damping ratio.

1.9

1.8

T, 1.7

N

1.6 ~.

1.5
0.0 0.2 0.4 ¢ 0.6 0.8 1.0

Fig. 3.4.2. Critical time delay versus damping ratio

Given a time delay J<r,,, the transition set C; shown in Fig. 3.4.3 does not
intersect itself. This curve, together with the lines of #=1 and v=2¢ , surrounds a
shaded region denoted by D} in Fig. 3.4.3. According to (0,0)cDj , all combina-
tions of (u,v)eD} guarantee the system stability for equal time delays z,=7,=6 .
This region will be called the stability region hereafter for short.

It should be emphasized that D} in Fig. 3.4.3 is the unique stability region
where the feedback gains guarantee the system stability for any equal time delays
7,=7,=r<5 . What follows is an intuitive proof of this assertion.

By differentiating Eq. (3.4.3) with respect to @, we have the tangent of C, at
the starting location

-0 @’ -1 i
AT " eoswr+ —-2-27)sinwr
o o (*-2-2¢0)
u - P20
du ou 2w(1+{r)coswr+(rw” —7-2¢)sinwr (3.4.8)
0w

. 244(T+7° =+00).
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If 0<7<§, the curves C, and Cj intersect each other near (0, 24) as shown
in Fig. 3.4.3. According to the analysis in Subsection 3.1.2, only the parameter
combination (#,v) under the conditions p®-4¢>0, p<0, ¢>0 enables Eq.
(3.1.10) to have two positive roots. The third inequality here implies that C, and
C; intersect each other only in the region of |u|<1. Thus, C, can not enter into
the stability region D} if u<—1. As a result, the combination of feedback gains
(u,v)eD} ensures that the system is asymptotically stable for any equal time de-
lays 7,=7,=7<6 .

v
R+

¢ % 2T

R u

Cr Z-.. C,

Fig. 3.4.3. Stability region D}; on the plane of (#,v) for 7,=7,=7<6

v

A
N T

= C;
K

‘.'Cd

Fig. 3.4.4, Transition sets Cy; and C, on the plane of (u,v) for equal time delays

Then, it is easy to see that the system is unstable for any 0<z<¢g if the combi-
nation of feedback gains (u,v) falls into other shaded regions, say D3 in Fig.
3.4.4, where the roots of Eq. (3.1.3) seem to have the negative real parts again
with variation of (u,v). In fact, even for a very short time delay 7, the corre-
sponding spiral C, will enter into Dj as long as the frequency @ is high enough.



90 3 Stability Analysis of Linear Delay Systems

This implies that the system will undergo instability if the disturbance Ax(¢) in-
volves any harmonic components of sufficiently high frequency. As a result, the
assertion, made in (Palkovics and Venhovens 1992), that there exist other stability
regions on the plane of (u,v) is not true.

3.4.2 Systems with Unequal Time Delays

In the case of 7,#7,, let Ar=|r,—7,|. It is obvious that both » and v in Eq.
(3.4.2) will approach to the infinity when wAr—nn/2,n=13S5,.... Thus, the tran-
sition set given by Eq. (3.4.2) in this case is no longer a continuous curve. It con-
sists of infinite number of curves defined by the parametric equation in @ on the
intervals [0, ©n/2A7), (n/2A7t, 3n/2A7),and so on. As analyzed in the previous
subsection, the boundary of the stability region is a small part of the transition set
corresponding to the lower frequency @ . So, we focus on the transition set in the
frequency range we[0, n/2A7).

Consider first the case when 0<7,<7,. The transition set is a curve starting
from (1,2{+7,) on the plane of (#,v) and approaches to the infinity when
w(r,—7,)—>n/2 . Itis easy to find that the tangent of the asymptotic line reads

(1-0*)sinwr, +2{wcoswr,

u  o[(l-0*)cosa(r, +1/2)-2lwsinw(r, +1/2)]

3.4.9
. - (3:4.9)

o 2r,-,)

Obviously, if Az is small, the curve will spiral one or more rounds and go to the
infinity on the second quadrant or the fourth quadrant. Otherwise, it goes to the in-
finity on the fourth quadrant. These two cases are shown in Fig. 3.4.5a and 3.4.5b,

respectively.
If 0<z,<1,, we similarly find the tangent of the asymptotic line

v (1-0*)sina(z, +1/2)+2{wcosa(r, +1/2)

u o[(1-0*)coswr, -2{wsinwr, ] (3.4.10)

1 ®
o 2r-1,)

when w(r,—7,)—>n/2 . The transition set will approach to the infinity on the first
quadrant or the third quadrant if Az is small. Otherwise, it goes to the infinity on
the third quadrant. These two cases are shown in Fig. 3.4.5¢ and 3.4.5d, respec-
tively.
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Noting the marginal stability conditions in Eq. (3.4.2) for a system without time
delays in feedback, we can determine the stability regions shown as the shaded
ones in Fig. 3.4.5. Fig. 3.4.5d shows that the stability region shrinks to a very
small one if 0<z,<<t, . This is the most dangerous case that should be avoided in
practice.

Fig. 3.4.5. Transition sets and stability regions on the plane of (u,v) for unequal time de-
lays; a. 7, <7, , small At ,b. 7,<7,,large At ,¢. 1;>7,,small Ar,d. r;>7,, large At

3.5 Stability Switches of High Dimensional Systems

As the delay-independent stable region of a practical system is often a very small
part in the parameter space of the system, a question is aroused as following. What
stability properties does a system have if the system parameters are chosen out of
the delay-independent stable region in the parameter space?

To answer this question, the characteristic roots of a delayed dynamic system
are taken as the functions of time delay. If the system parameters do not fall into
the delay-independent stable region, the real part of at least one characteristic root
changes its sign when the time delay varies. That is, the stability of system can not
keep unchanged with an increase of time delay. Such a change with increase of
time delay has been referred to as the stability switch in (Kuang 1993) and (Mar-
shall et al. 1992). The concept of stability switch is not new, still, it is an open
problem if some uncertain parameters of the system are involved in the design
phase.



92 3 Stability Analysis of Linear Delay Systems

The objective of this section is to gain an insight into the system stability in the
parameter space and to give a simple approach so as to complete the stability
analysis as done by using the method of D-subdivision.

3.5.1 Systems with a Single Time Delay

We first analyze the stability of a delayed dynamic system of single degree of
freedom to give a guide of the analysis of stability switches.
Example 3.5.1 Consider the system with the characteristic equation

DA, 0)=2+A+4+2e7 =0. (3.5.1)

Suppose that A=iw and ®>0 is a root of D(4,r)=0 for 7>0. From
D(iw,7)=0, thus, we have |(ia))‘ +ia)+4l=2 . There follows

o' -Tw*+12=0. (3.5.2)

This equation has four roots @, ;=2 and @, , =+./3.
Substituting A=iw,=2i into Eq. (3.5.1) gives cosw,7=0 and sinw,r=1. Then,
we have

rl,kzk’rt+§ and 7,,,-7,=n, k=0,1,2, ... (3.5.3)
At w,=4/3 , we have 2cosw,r=-1 and 2sinw,r=+/3 , as well as
Toi =[(2k+1)n—§]/\/§ and Toxa—Ta=2m/A3, k=0,1,2,.... (3.5.4)

It is obvious that D(4,0) is asymptotically stable. As the characteristic roots
are continuous with respect to 7, the system keeps stable until 7 arrives at n/4,
the minimum of critical time delays which may destroy the stability of system,
from the left side. To see whether the stability of system changes, we check the
sign of d[Re(A)]/dr as 7 is crossing /4 . Straightforward computation shows
that d[Re(1)]/dz>0 when 7=m/4. Hence, the characteristic equation of system
has a pair of conjugate complex roots with positive real part when 7 is a little bit
larger than ©/4 so that the system becomes unstable. The system keeps unstable
until 7 reaches the next critical time delay 27/(34/3) from the left side. At the
second critical time delay, d[Re(4)]/dz<0 holds. Thus, the characteristic equa-
tion decreases a pair of conjugate complex roots with positive real part and the
system becomes stable again. As the time delay increases further, the characteris-
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tic equation increases a pair of characteristic roots with the positive real part when
7 is crossing 7,,, and decreases such a pair when 7 is crossing z,,. With an in-
crease of time delay, therefore, the system changes the status from stability to in-
stability, and then from instability to stability, and so on. The stability exchange
happens one by one provided that 7, —7,,>0 holds. However, the relation
r],k+1—rl,k=n<2n/«/§ =T,41—7T24 indicates that the condition 7, —7,,>0 must
be destroyed with an increase of k. Thus, the exchange of stability has to stop
eventually and permanent instability occurs.

This example shows that the analysis of stability switches of a delayed dynamic
system includes two steps. That is, to find out the possible vibration frequencies
and possible critical values of time delay first, then to check the sign of differen-
tiation of the characteristic roots with respect to the time delay at the critical val-
ues. The second step tells if the time delay stabilizes or destabilizes the system.

Now we consider the stability switches of a high dimensional, linear dynamic
system with a single time delay governed by the following characteristic equation

D(A,7)=P(A)+Q(A)e " =0, (3.5.5)

where 7>0 is the time delay, P(1) and Q(A) are two polynomials of real coeffi-
cients with deg(P)=n>deg(Q). Without loss of generality, we assume that both
polynomials P(4) and Q(4) have no common pure imaginary roots.

To study the marginal stability when D(iw,7)=0, let

Pr(w)=Re[P(iw)], P (0)=Im[P(iv)],
Or(@)=Re[Q(@)], Q,(0)=Im[Q(w)], (3.5.6)

where P, (@) and Q(®) are even functions, whereas P,(w) and Q,(w) are odd
functions. Hence, the equivalent form of D(iw,7)=0 reads

{QR (w)coswr+Q (w7)sinwt =—PF, (@),

. (3.5.7)
0, (w)cosat—Q  (w)sinwr=-P,(w).

In order that Eq. (3.5.5) has a pair of pure imaginary roots ti@ for 720, it is ne-
cessary that |P(iw)|=|Q(iw)|, that is,

P (@)+ P (0)-10: (@)+ 0, (0)]=0, (3.5.8)

has a positive root @ . As the case of 7,=7, in Section 3.3, the left side of above
equation can simply be recast in an explicit form

F(0)=0"" +bo™ "™ +b,0*" ™ +---+b, 0" +b,. (3.5.9)

Thus, we have the following theorem.
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Theorem 3.5.1 In order that the quasi-polynomial D(A,r) has pure imaginary
roots A=tiw, it is necessary that @ is a real positive root of F(w).

Because P(iw) and Q(iw) do not share any real root, QRZ(a))+Q,2(a))¢O
must hold. Otherwise, Eq. (3.5.8) gives P;(w)=0, P,(®)=0, Qz(w)=0 and
O, (w)=0. They are in contradiction with the assumption. Once a positive root @
of F(w) is found, the critical time delays are given by

0 =22 oo, (3.5.10)
[0 [0}

where €[0, 2n) yields a set of triangle equations

Or (@) (@)~ P (0)Q, (@)

sinf = 0 2( ) Q2( ) ,
)+, (@
cosd— PR(wISQ,;(w)JrQ,Z(w)g(a,). (3.5.11)
Oy (@)+0, (®)

If F(w) has no positive roots, the system does not undergo any stability
switch. That is, the system is delay-independent stable if it is asymptotically stable
when the time delay disappears, or unstable for an arbitrary time delay if the sys-
tem free of time delay is unstable.

If F(w) has any positive roots, the root A of Eq. (3.5.5) can be regarded as a
function of 7 and is denoted by A(z) . Once a pair of pure imaginary characteris-
tic roots Tiw is found and the corresponding critical values of time delay in Eq.
(3.5.10) are determined, the variation direction of its real part with respect to the
time delay 7 can be studied through S=sgn[d(Red)/d 2'| 1=io ] - The following theo-
rem enables one to avoid complicated computation.

F

N

Im\ Im)
0_ Rer 0 ReA

Fig. 3.5.1. Explanation of Theorem 3.5.2
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Theorem 3.5.2 S=sgnF'(w) .

Proof Differentiating Eq. (3.5.5) with respect to 7 yields
aa_ Q%)
dr  P'(A)e” +0'(1\)-10(r)

(3.5.12)

In order that this derivative is properly defined at A=*iw, it should be required
that P'(iw)exp(iw7r)+Q'(iw)—1Q(iw)=#0, i.e., *iw are not a pair of repeated
characteristic roots. Noting the following two relations

sgn[Re( 1_ )=sgn( Z“bz)zsgn[Re(aHb)], abeR, (3.5.13)
a+ib a +b

L PR 00 _©

(dz' AP(A) A0 A°

(3.5.14)
we have

S=sgn| d(ReAd)
dr

]=sgn[Re(ji>

]=sgn[Re(%)*‘ ]

A=iw A=iw A=iw

Pliw) Qo) 1t

=Rl o) 100w o

il

Q'(iw)Q(iw) P'(iw)P(iw)

s o) wlP(o)]

B

=sgn{Im[Q'(iw)Q (iw)- P'(iw)P(iw)]}, (3.5.15)
where the bar denotes the operation of complex conjugate. Substituting
Im[Q'(iw)Q (iw)~ P'(iw)P(iw))
=Py (@) Pr(@)+ P (0) P (0)~ O (@) (@)~ 0y (@)Q) (@), (3.5.16)
=%F ()

into Eq. (3.5.15) yields
S=sgnF'(w). (3.5.17)

This completes the proof.

Furthermore, two cases are discussed as following. The first case is that the
polynomial F(w) has one positive simple root @, with the critical values
7y, k=12, of time delay given by Eq. (3.5.10). Because the leading coefficient
of polynomial F(w) is positive, we have F(w)>F(w,)=0 for all w>w, and
F(o)<F(@,)=0 for we[0, @,). There follows F'(w,)>0. This fact indicates
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that each crossing of the real part of characteristic roots at a critical value 7, of
time delay corresponding to +i@w, must be from the left to the right. Thus, the
characteristic equation of system has a new pair of conjugate roots with positive
real parts when the time delay is crossing a critical value 7, of time delay, and the
number of characteristic roots with positive real part can not decrease as the time
delay increases. Hence, if the system without time delay is asymptotically stable,
the numbers of characteristic roots with positive real part are 0,2,4,---,2i,--- on
the intervals [0, 7,), (79, 7,), (7, 75)-(Ti» T;)y -+, respectively. This means
that the system is asymptotically stable for z€[0, z,), and unstable for
T€[7y, +0) . If the system free of time delay is unstable, then there exists at least
one pair of conjugate characteristic roots with positive real part for 7€[0, 7).
Thus, the system is unstable for any given time delay.

In the second case, the polynomial F(@) has a number of simple, positive
roots denoted by @,>w,>--->w,>0. The difference between two critical values
of time delay corresponding to a given pair of roots *iw, satisfies

2-j+1,k s

Tign — T =——<——=T, 4~ k=12,--, j=1,2,-,p—1. (3.5.18)

The crossing of real parts of characteristic roots at two adjacent simple roots @;

and ®,,, must be in opposite directions, since F'(w;)and F'(w,,) have oppo-
site signs. In fact, it is easy to see that both sgn[F'(®,;,)]>0 and
sgn[F'(@,;)]<0, j 21 are true since F(w)>F(w,)=0 holds for all we(w,, +w)

and all possible we (@, @), and F(w)<F(w,)=0 for all possible
we (w,,, @y ) . That is, the crossing real parts of characteristic roots at 7,;_,

corresponding to *iw,,, must be from the left to the right, and the crossing at
7, corresponding to tiw,; must be from the right to the left. Therefore, as the
time delay varies from zero to the positive infinity, the characteristic equation of
system always adds a new pair of conjugate roots with positive real parts for each
crossing at 7,;,,, but reduces such a pair for each crossing at 7,;, . Given a long
time delay 7, Eq. (3.5.18) indicates that the interval [0, 7] includes more 7,

corresponding to tie, than 7,, to +iw,. Hence, more characteristic roots change
their sign of real parts from the negative to the positive at z,, than those changing
the sign of real parts from the negative to the positive at z,, with an increase of
time delay in the interval [0, 7]. A similar assertion holds also true for the time
delay crossing at 7;,, and 7,, corresponding to *iw; and *iw,, and so forth.
Hence, the characteristic equation of system must have eventually some roots with

positive real parts when the time delay is long enough. As a result, the system
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must become unstable with an increase of time delay and the number of stability
switches is finite.

The above analysis can be summarised as following.

Theorem 3.5.3 Assume that Eq. (3.5.5) has no pure imaginary characteristic
roots iw such that Q(iw)=0.

(a) If the polynomial F(w) has no positive root, the system is delay-
independent stable or unstable for any given time delay, depending on whether or
not the system free of time delay is stable.

(b) Suppose that F(w) has only one simple positive root @ . If the system free
of time delay is asymptotically stable, there exists exactly one critical time delay
7, >0 such that the system remains asymptotically stable when r€[0, 7,), and
becomes unstable when 727, . If the system is unstable for 7=0, it is unstable for
an arbitrary time delay 7.

(c) If F(w) has at least two positive roots @,>@,>-->w,>0 and the roots are
simple, a finite number of stability switches may occur as the time delay 7 in-
creases from zero to the positive infinity, and the system becomes unstable at last.

If the order of a system is one or two, the analysis on the number of real roots
of F(w) is relatively easy. If the system is of high order and includes some
parameters to be designed, however, pure numerical consideration is time con-
suming. In this case, the generalized Sturm criterion serves as an effective tool for
analysing the stability switches.

Theorem 3.5.4 Assume that Eq. (3.5.5) has no pure imaginary characteristic
roots satisfying Q(iw)=0 and the roots of F(w) are simple. Let / and s be the
number of non-zero terms and the number of variation of signs in the modified
sign table of the discrimination sequence of F(@), then following facts are true.

(a) If /-25=0, the system is delay-independent stable or unstable for any time
delay, depending on whether the system free of time delay is asymptotically stable
or not.

(b) If /-25=2 and the system free of time delay is asymptotically stable, there
exists a critical time delay 7, >0 such that the system remains asymptotically sta-
ble when 7€[0, 7, ), and becomes unstable when 727, . If /-2s=2 and the system
is unstable for 7=0, it keeps unstable for an arbitrary time delay 7 .

(c) If /-25>2, a finite number of stability switches occurs as the time delay 7
increases and the system becomes unstable at last.

Based on Theorem 3.5.1 and the generalized Sturm criterion, the stability ana-
lysis for-a dynamic system withruncertain parameters and an uncertain time delay
can be completed as follows.
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Algorithm 3.5.1

(a) Find polynomial F(w) corresponding to the characteristic function.

(b) Run the MAPLE routine discr to get the discrimination sequence of F(w)
and the factors d;, i=0, 1,....

(c) Divide the parameter region of concern into some sub-regions by drawing
the graphs of d,, i=0, 1,... and the curves determined by the Routh-Hurwitz sta-
bility conditions of system when 7=0.

(d) Use Theorem 3.2.2 to check the number of real roots of F(w) in each sub-
region of the parameter region and use Theorem 3.5.1 to predict the stability
switches.

This algorithm will be demonstrated in Section 3.6 via analysing the stability
switches of a quarter model of active suspension and a four-wheel-steering vehi-
cle, respectively.

3.5.2 Systems with Commensurate Time Delays

In this subsection, the problem of stability switches is studied for a more general
linear dynamic system, which has multiple commensurate time delays. As we shall
see, a similar result can be obtained as in the case of single time delay.

Consider the characteristic quasi-polynomial of system in the form

P(,2)=3q,(D)z*, (3.5.19)
k=0

where z=e™** and 7>0. We define first
PY(4,2)=q,(-A)P(A,2)—q, (A)z"P(-A,1/z). (3.5.20a)

It is easy to see that PV (4,z) can be written as
P<‘>(/1,z)=§q,ﬁ”(,1)z* , (3.5.20b)
k=0
since it does not contain the term z” . Repeating the same procedure, we have
P‘”(,i,z)smzjq;f‘)(z)z", Jj=1,2,-m. (3.5.21)
k=0

Obviously, if (4,2)=(iw.,e-"°")_is.a root of P(4,z)=0, so is it for P(—4,1/z)=0
since the coefficients in P(A4,z) are real. Moreover, (4,z)=(iw,e ") is a com-
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mon root of all PY(A4,z)=0 and PY(-A,1/z)=0, j=1,2,---,m. Notice that
P™(A,2)=¢{™(A) is independent of z, it must be in the form of polynomial
F(w*) because g{™(+1)=0 at each root (1,z)=(iw ,e"'**) of P(4,z).

Theorem 3.5.5 In order that P(A,z) has a pair of pure imaginary roots
A=*iw , @ must be aroot of F(w?).

Remark 3.5.1 From the concept of resultant for two polynomials of a single
variable, the polynomial F(w?) is in fact the resultant of polynomial P(A,z) and
polynomial z” P(—A,1/z) with respect to z except for a non-zero constant.

Once a positive root @ of F(@?) is found, it is possible solve P(iw,z)=0 for
z under the condition of |z|=1 and then determine the critical values of time de-
lay. For the analysis of stability switches, the variation direction of real part of
characteristic roots should be determined as ¢ is varied. That 1is,
S:sgn(dRexl/dT)| =i Deeds to be computed.

For brevity, denote the quasi-polynomials by Q(1,7)=P(4,z) and
0(A,0)=PYV(4,z) for j=1,2,--,m. Assume that (1,r)=(iw,,7,) yields both
QO(iw,,r,)=0 and QP (iw,,7,)=0. Let 7 be slightly perturbed to 7=r,+57, o1
and 84, be the small perturbations of A from iw, such that

{Q(ia)o +0A,7,+67)=0, (3:5.22)
0V (iw, +4,,7,+61)=0.
We need to know when RedA-RedA, >0 and when Redd-RedA, <0 . Expanding
the above two equations and neglecting the high order terms with respect to small
perturbations 67, 64 and 84, , we have

{Ql (i@,,7,)0A+0Q. (iw,,7,)67 =0,

3.5.23
W (iwy,70)04, +OP (iw,,7, )07 =0, ( )

where the subscripts 4 and 7 represent the corresponding partial derivatives of
the functions. Straightforward computation gives

El)(iwo :T0) =40 (~i5)Q, (im4,74)+q,,(10,) 25 O, (-10,,7,)
O (1@y,70) =0 (~i05)Q, (1), 7y)~q,,(0,)z0 O, (-iwy,7y),  (3.5.24)
where zJ=e "  Thus,
90 (=109)[Q; (105,7,)64 + 0, (iwy,7,)07]
+4,(iy)z [Q; (-1w,,7))04 - Q, (-iw,,7,)57] =0. (3.5.25)
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Now, we eliminate Q,(+i®,,7,) and Q,(tiw,,7,) . To this end, imposing the
complex conjugate on the first equation in Eq. (3.5.23) yields

0, (-i@y,7,)0 +Q, (—iw,,7,)57=0 . (3.5.26)
This, together with Eq. (3.5.25), leads to

qo(—10,)Q, (10,,7,)(OA, —OA)

] ” ) _ (3.5.27)
+q,,(10y)z, O, (—1®,,74 ) (A, +04)=0.

Imposing the complex conjugate on the above equation, we have

q0(10,)Q, (-1@,,7, )(5/71 _é%)

) o _ (3.5.28)
+q,,(-10,)z" Q, (1w, , 7, ) (04, +04)=0.
Eliminating Q, (i®,,z,) from Egs. (3.5.27) and (3.5.28) gives

90 (10)q; (-1, )64, ~5A)(64,~6)
=q,,(i0,)q,, (<10 )64, +61 )64 +62).

Let oA=x+iy and JA4,=x,+iy,. Then, we can rewrite Eq. (3.5.29) as

(3.5.29)

(90 (109)q, (-iwg) =4, (10,)q,, (-] (x> + X7 +(y=y,)*)
=2xx,[q,(10,)q,(-1@y) +q,,(i0,)q,, (-i@,)].
Thereby, RedA-RedA, >0 holds if and only if

(3.5.30)

Q(()l)(iwo):‘IO(iwo)CIo("ia)o)_qm (iwy)q,,(-iwy)>0 . (3.5.31)

This implies that as the time delays increase, the direction of crossing by a root of
Q(4,7), namely P(A,z), is the same as that of the corresponding root of
QW (4,7), namely P (A,z), if and only if ¢{"”(im,)>0, and is opposite if and
only if ¢{" (im,)<0.

The same procedure can be repeatedly applied to

{Q"" (iw, +54,,7,+57)=0, (3.5.32)

Q‘””(ia)o+/1 7, +067)=0, i=1,2,-,m=2.

i+12

Therefore, the direction of crossing by a root of Q' (A4,r), namely P¥(4,z), is
the same as that of the corresponding root of Q“*"(4,7), namely P“"(4,z), if
and only if ¢{*"(im,)>0, and is opposite if and only if g\ (iw,)<0 , where

q(()H])(ia)o)=Q((]i)(iw())q(()i)(_iwo)—qui(iwo)q;—i(_iwo) . (3.5.33)
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In the final step, namely the simplification from Q" "(1,0)=¢{" " (1)+q\" ™" (A)z
to QY (AD)=¢{"""(D)qgs" ™ (=A)—q" P (A)g!" " (=1), Theorem 3.5.2 can be used.

Then, we have the following theorem.

Theorem 3.5.6 Let T1(1)=q,(A)g"(1)---q{" " (A), then

dF(0*)
d(w?)

d(Re)

S =sgn
gn| a7

1.

D=0,

acio, 1 =011, )

Example 3.5.2 Study the stability switch of
P(A,2)=mA +cA+k—uz’ —viz with z=¢™*.
We have
@ (D=mA +cA+k, q(A)=—vl, q,(D)=-u.

The analysis on the stability switches includes five steps as following.

(a) Computation of P (4,z) : We have
PY(A,2)=q,(-A)P(A,2)~q,(A)z* P(-A.1/2)

=m?* 2 +Q2mk -+, —u +[-mvA +evA +(u—k)vA]z,

and then
g\ (W)= m* 2 +Q2mk—cH 1+ k=i,
g (A)= ~mvA +evA +(u—k)vA .
(b) Computation of P‘¥(A4,z) : We derive
P? (4,2)=¢" (=) PP (4,2)—q" (1) zP"(-A,1/z)
=m* A +c, A+, +e, P+,
where
q =m*(2c* —4mk—v?),
c,=c* +6m’k +2mkv® —2m*u* -V —2muwv* —4mc*k
¢, =2k +Amhku” + 2kuv? —k*v: —4mk® —u*Vv: - 2¢Mu?,
c,=(k* ~u*)*.
(c) Computation of the critical times: Solve

E(@*)=m"e"+c,0°+c,0 +c,0” +c,

(3.5.34)

(3.5.35)

(3.5.36)

(3.537)

(3.5.38)

(3.5.39)

(3.5.40)

(3.5.41)

(3.5.42)
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for positive roots first. Then, find out the complex values of z from P(iw,z)=0
such that |z|=1 and in turn find out the critical time delays.

(d) At each pair of critical values of @w and 7, determine the sign of
g (iw)F'(w?) . If the sign is positive, then the system increases a pair of char-
acteristic roots with positive real part as the time delays cross the critical value. If
the sign is negative, the system decreases such a pair of characteristic roots with
positive real parts.

(e) Determine the stability for the system free of time delays. This, together
with the conclusions obtained in step (d), enables one to determine the number of
interchange of stability. We must pay attention to the condition that guarantees the
occurrence of interchanges.

3.6 Stability Analysis of an Active Chassis

In this section, the stability of equilibrium of two models of advanced ground ve-
hicles is analyzed to demonstrate how to investigate the stability switches of de-
layed dynamic systems with undetermined system parameters and time delays.
One is the quarter car model of ground vehicle equipped with a sky-hook damper,
and the other is a four-wheel-steering car with a time delay in driver's response
taken into account. The stability of equilibrium of these two models has been re-
ported in a number of previous publications, but mainly limited to relatively sim-
ple cases. For example, the stability of equilibrium of an undamped quarter car
model of vehicle with active suspension was analyzed for a given time delay in
(Palkovics and Venhovens 1992) by using the method of D-subdivision. Numeri-
cal analysis was made in (Hu and Wu 2000) to investigate the stability and the
Hopf bifurcation for the four-wheel-steering car with driver's delay taken into con-
sideration when the vehicle parameters were given. In what follows, attention will
be paid to the stability switches of the equilibrium of those two models under dif-
ferent parameter combinations.

3.6.1 A quarter Car Model of Suspension with a Delayed Sky-hook
Damper

This subsection deals with the stability switches of the equilibrium of a quarter car
model equipped with an active suspension. As discussed in Subsection 1.1.1, the
equation of motion of the linearized system at the equilibrium yields
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{mb)'c'(t)+cs [x(0)— y(O)+k, [x(1)~y(O)]+Vi(t-7) =0, (3.6.1)

m, ()¢, [x(O)=y(O)-k, [x(O)- y(O)+k, [ y()—2()]-vi(1-7) =0,

where x presents the vertical displacement of the vehicle body m,, y the vertical
displacement of the unsprung mass m,, z the road disturbance, ¢, and k, the
damping coefficient and the stiffness coefficient of suspension, and %, the linear
stiffness of tire, v the feedback gain of velocity, 7 the time delay in the feedback
control of sky-hook damper.

In the following study, the system parameters are taken from a real car model.
They are m, =290 kg, m,=59 kg, k,=16,812 N/m, k,=190,000 N/m, ¢,=0 ~ 980
Ns/m, v=-2,000 ~ 2,000 Ns/m.

To simplify the analysis, both the time ¢ and the time delay 7 are substituted
with the dimensionless ones

, ’ k
ks t—t, T, (3.6.2)
my, m,

With help of the following dimensionless parameters

m=" 249153, k=Kco 11301,
mt ks
c=—Ss €0, 0.4438], v=———=e[0, 0.9078], (3.6.3)

myk, myk,

Equation (3.6.1) can be recast as

{f(t)+0[i(1)—)"(t)]+[X(t )= y(Ol+vx(t-7)=0,

. N . (3.6.4)
(O)=mclx(1)— y(O)]=m{x(2)— y(O))+ m ky(£) —mvx(t-7)=0,

where the dot represents the derivative with respect to the new time 7, and the
road disturbance z is neglected since it does not play any role in the stability of a
linear system.

The characteristic equation of Eq. (3.6.4) reads

D(A,0)=2* +e(lm) 2 +(Lemmk) 2 +mckA+mk+vA(R +mk)e ™ =0, (3.6.5)
and gives
D(4,0)=2* H{c(+m)+v] 2 +(l+m+mk) A* +mk(c+v) A+mk=0 . (3.6.6)

The Routh-Hurwitz criterion indicates that the system free of time delay is as-
ymptotically stable if and only if
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v+ce(1+m)>0,
v(+m)+c[(m+1)* +m*k]>0, 3.6.7)
v+ m+k)H1v+mke? >0.

When 7>0, the polynomial F(w) defined by Eq. (3.3.5) reads

F(0)=0"+ba’ +b,0* +b,0’ +b,, (3.6.8)
where

b=c* v -2+2m(c* ~k—D)+m’c?,
b, =l+m(2kv —2kc* +4k+2)+m* (k> —2kc? +2k+1),

by =—2mk+m’k(kc* ~kv* —2k-2),

b,=m’k’.

(3.6.9)

By using the MAPLE routine discr, we obtain the discrimination sequence
l, dy, dyd,, dd,, d,d,, dd,, dd,, d’d,, (3.6.10)
where
dy=-b,, d =-8b,+3b°, d,=bb,+3bb,~4b,",
d,=-3bb,+bb,> —6b,’b, +14b,b,b, —4b,’ +16b,b, -18b,>,
d,=—bb,’b,~18b,b,b,> +7b,*b;b,+12b,b," b, —48b,b;b,
+4b, b, +16b,b,> +27b, +4b’b,> ~3b,b,b,
d,=-27b"b,” +18b,’b,b,b,~4b,’b;’ —4b,’b,’ b, +b,*b,’ b,
+144b,°b,b,* ~6b,*b,*b,~80b,b,b,b,+18b,b,b,”~192b,b.b,’
+16b,"b,~4b,’b,> ~128b,%b,> +144b,b,*b, +256b,> -27b,",
dy=b,>0. (3.6.11)

In what follows, the stability switches of this quarter car model of active suspen-
sion are discussed for different combinations of dimensionless damping ratio ¢
and feedback gain v.

(1) General results

Consider the parameter region defined by

Q= {(v,e) | p<09, 0<c<0.45}. (3.6.12)
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When c¢ varies from 0 to 0.45, the inequalities d,>0, d,>0 and d;>0 always
hold true. As shown in Fig. 3.6.1, the curves, symmetrical to the c-axis, are given
by d,=0, d;=0, d,=0 and d;=0 on the plane of (v,c). The dashed curve is
given by d,=0, the dotted curve by d,=0, the lowest thick curve (broad V-
shaped curve) by d,=0, while the curve determined by d;=0 consists of two
parts, the narrow V-shaped and the broad V-shaped curves. As a result, the region
£ is divided into 10 sub-regions, which are numbered by 1, II, ..., X, from the
left to the right and from the top to the bottom, respectively.

From Eq. (3.6.7) we know that the left part of the narrow V-shaped curve is al-
so the boundary of the region determined by the Routh-Hurwitz stability condi-
tions. That is, the system free of time delay is asymptotically stable when the
parameters are chosen from the sub-regions II, III, V, VI, VIII, and X, and is un-
stable when the parameter combinations are taken from the sub-regions I, IV, VII
and IX.

0.45

03

0.15

-8.9 -0.45 0 0.45 0.9

Fig. 3.6.1. Parameter division for the stability of a quarter car model of active suspension,
where the four sub-regions in lower part are numbered as VII, VIII, IX and X

As shown in Table 3.6.1, the number of variation of signs in the modified sign
tables of the discrimination sequence is 4 when a pair of parameters (v, ¢ ) falls
into the narrow V-shaped region, namely, sub-regions II and V. In this case, the
polynomial F(@) has no real roots (0 =8—2x4). On the boundary of sub-regions
II and V, the sign table of the discrimination sequence is {1, 1,1, 0,0, 1, -1, 1] and
the modified sign table is [1, 1, 1, -1, -1, 1, -1, 1], so the number of variation of
signs is also 4. This means that the polynomial has no real roots. In other sub-
regions, the number of variation of signs is 2 and the polynomial F(w) has ex-
actly 2 (=(8-2x2)/2) distinct positive roots. Thus, the system is delay-
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independent stable in the narrow V-shape region, namely, sub-regions II and V,
and it may exhibit a finite number of stability switches in other sub-regions.

Table 3.6.1. Sign tables of the discrimination sequence in the stability analysis of a quarter
car model of active suspension

Sub-region dyd, d,d,d, ds dg D, D, Dy D, Ds Dy D, Dy 1-2s
I, I + 4+ 4+ -t I1r111-1111 4
11 ++ 4+ -+ 11 11-11-11 0
1V, VI ++ - ==+ 111-11111 4
\'% t+-—-=-++ 111-111-11 0
VII, VIII ++ -+ -+ + 111-1-1-111 4
IX, X ++ -+ +++ rt11-1-1111 4

We can find that only when a pair of parameters (v, ¢ ) falls to the boundary of
two V-shaped regions, can the polynomial F(w) have repeated real roots. On the
other common boundaries outside the narrow V-shaped region, the polynomial
F(w) has 2 distinct simple positive roots. For example, on the common boundary,
determined by d,=0, of sub-regions III and IV the modified sign table of the dis-
crimination sequence is [1, 1, 1, -1, -1, 1, 1, 1] since the sign table of the discrimi-
nation sequence is [1, 1, 1, 0, 0, 1, 1, 1]. Thus, the number of variation of signs in
the modified sigh table is 2 and F(w) has 2 distinct simple positive roots. On the
curve determined by d5=0, the modified sign table of the discrimination sequence
is[1,1,1, -1, 1, 1, 1, 1], for the sign table of the discrimination sequence is [1, 1,
1,-1,0,0, 1, 1]. So, the number of variation of signs in the modified sigh table is 2
and F(w) has also 2 distinct simple positive roots. Thus, the system possesses a
finite number of stability switches when the parameters are chosen from the com-
mon boundaries except for the two V-shaped curves.

Though all the sub-regions, except for those numbered as II and V, make the
polynomial F(w) have 2 distinct positive roots, the dynamic behaviors of the
system do have differences in these sub-regions. Let the time delay increase from
zero to the positive infinity. When the parameters are chosen from sub-regions I,
IV, VII and IX, the system undergoes a finite number of stability exchanges from
instability to stability, then to instability and so on, and eventually becomes unsta-
ble. However, if the parameters are taken from sub-regions III, VI, VIII and X, the
system first remains stable, then becomes unstable, and then turns to be stable, and
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so on, and becomes unstable at last. This fact will be demonstrated through a few
case studies as follows.

(2) Case studies

Case 1 v= 0.6 and c= 0.4. This parametric combination falls into the sub-region
III in Fig. 3.6.1. In this case, the system free of time delay is asymptotically stable.
It is easy to know that the polynomial F(@) has 2 distinct real roots w,=1.2077
and w,=0.7681, satisfying F'(®,)>0 and F'(@,)<0, respectively. The corre-
sponding critical values of time delay are

7,= 18112, 7,,=7.0136, 7,,=12.2161, 7,;=174185, ... (3.6.13a)
T,0="5.2456, 7,,=13.4262, 7,,=21.6068, 7,;=29.7874, ... (3.6.13b)

They can be ranked as

Ty 0<Tp0< Ty <Ty <Ty <T)3<Ty, < (3.6.14)

This sequence of critical time delays shows that the system is asymptotically sta-
ble for z€[0, 7,,), unstable for re[r,,, 7,,], asymptotically stable again for
te€(7,,, 71,), and eventually unstable for 727, ;.

The conclusions for the stability in the first three intervals lie in the facts that
F'(0,)>0 and F'(w,)<0 hold, and that the system is asymptotically stable for
7=0. To show the conclusion for 7>7,,, we observe that in Eq. (3.6.14) 7, is
followed immediately by z,,, but any 7,, cannot be followed by z,,,; since
Ty —T1x =2 @, <2/ @®_=T,;,,—T,; and 7,,<7,,. Hence, the system has at
least one pair of characteristic roots with positive real part if 7>7,,. This implies
that the equilibrium of system is unstable as long as r>7,, holds.

Now, the case when 7>7,, should draw special attention. In this case, we can
not simply follow the conditions F'(w,)>0 and F'(w_)<0 to conclude that the
system is asymptotically stable for 7&(z,,, 7,3), (7,2, 714) , and so on. This fact
can be verified when 7=15€(r,,, 7,5) is taken as an example. Let
M(w)=Re[i*D(iw,r)] and N(w)=Im[i*D(iw,r)]. Then, M(w) has four posi-
tive roots p,=7.7727, p,=1.0301, p;=0.7872 and p,=0.7235, which yield
N(p)=11.7883, N(p,)=35.1676, N(p;)=—12.2723 and N(p,)=—917.0734.
Thus, we have

241(—1)"*1 sgn[N(p,)]=1-1-1+1=0. (3.6.15)
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Because n=4 and N(0)=0, Eq. (3.6.15) contradicts the stability condition given
by Theorem 2.2.7 as following

%+%(—1)4N(0)+Z(—1)"‘] sgn[N(p,)]=0. (3.6.16)

k=1

This result can also be verified by using the Nyquist diagram. The system, there-
fore, is unstable for re(r,,, 73), (7., 714), ..., and then unstable for all
727, . As a result, the number of stability switches is 3.

Case 2 v=0.3 and c=0.1. In this case, the polynomial F(®) has 2 distinct re-
al roots @,=1.0979 and @,=0.8361 so that F'(e,)>0 and F'(®w,)<0 hold, re-
spectively. The corresponding critical values of time delay are

7,,=1.7053, 7,,=7.4280, 7,,=13.1506, r,,=18.8733,... (3.6.17a)
7,0=52560, 7,,=12.7708, 7,,=20.2856, 7,,=27.8004,... (3.6.17b)

which are ranked as

Ty g <Tpo< T <Ty < T <Ty3 <Tp, <T| 4 <Tp;3< (3.6.18)

It can be similarly found that the system is asymptotically stable for z€[0, 7,,),
(20, 71;) and (7, 71,), and unstable for relr,, 750], [71, 72,] and
[712, +0) . Hence, the system exhibits 5 stability switches.

Case 3 v=—0.5 and ¢=0.2. This parameter combination gives 2 distinct real
roots @,=1.1961 and @, =0.7690 of polynomial F(w), satisfying F'(®,)>0 and
F'(w,)<0, as well as the critical values of time delay

7,,=4.2369, 7,,=9.4898, 1,,=14.7427, 7,,=19.9956, ... (3.6.19a)
7,,=1.5375, 7,,=9.7085, 7,,=17.8796, 7,,=26.0506, ... (3.6.19b)

They are ranked as

Tyo< T 0<T STy <Tj5<T,,< (3.6.20)

Now, the system free of time delays is unstable, but becomes stable for
7€(7,4, T19) , and then goes to unstable again for re(r,,, +o0). Hence, the sys-
tem undergoes the stability switch twice.

Case 4 v=0.05 and ¢=0.01. This is a case when the stability of the system
changes many times with an increase of the time delay. In fact, this parameter
combination.gives.2.distinct.real.roots @, = 0.9806 and ®,=10.9356 of polynomial
F(w), satisfying F'(w,)>0 and F'(@,)<0. The critical values of time delay cor-
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responding to @,=0.9806 are 1.7892, 8.1965, 14.6039, 21.0113, 27.4136,
33.8260, 40.2333, 46.6407, 53.0481, 59.4554, 65.8628, 72.2701, 78.67750, ...,
while those corresponding to @, =0.9356 are 4.8387, 11.5545, 18.2703, 24.9860,
31.7018, 38.4175, 45.1333, 51.8490, 58.5648, 65.2806, 71.9963, 78.7121,
85.4278, and so forth. In accordance with the notations used above, we have
To10< T <Tiip <Tpy; . As a result, the system undergoes 23 stability switches as
the time delay increases!

These numerical examples illustrate that, in the sense of stability switches, the
stability behavior of the quarter car model of active suspension with a delayed
sky-hook damper is very complicated. The system may change its stability many,
but finite, times as the time delay increases. If all the critical values of time delay
are increasingly ranked, then the change of stability must terminate as soon as any
7, is followed by 7,,,, in the sequence of critical time delays, and the system is
unstable as long as 7>7,, . The increase in time delay usually results in instability
of the system, but it also offers the probability of stabilizing an unstable system
free of time delay as demonstrated in Case 3.

3.6.2 Four-wheel-steering Vehicle with a Time Delay in Drive's
Response

Now consider the model established in Subsection 1.1.2 for four-wheel-steering
vehicles. Let V' be the lateral velocity, » the yaw angular velocity, y the vertical
coordinate in a fixed frame,  the heading angle of the vehicle, J, and J, the
steering angles applied on the front and rear wheels respectively. When the time
delay in driver's response is taken into account, the motion of system is described
by a set of five-dimensional differential equations with a time delay as following

mV ()=—mUr(1)+2F ;cosS ; (1)+2F, cosS, (1),
1,#(t)=2aF ;c0s3 , (1)-2bF, cosS, (1),
y(t)=V (t)cosy ()+Usiny (1), (3.6.21)

w(n)=r(1),

. K
o, (t)=71§ £ (1) T"' [ y(t—r)+§V(t—r)cosy/(t—z')+Lsiny/(t—T)]+ (@),

§ 5
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where U is the constant moving speed of the vehicle, I, the inertia moment of
rotation of the vehicle body with respect to the vertical axis, a and b the distances
from the center of mass to the front and rear axles respectively, F, and F, the
lateral forces generated by the contact between the tire and the road surface at
each of front wheel and rear wheel respectively, L the preview distance of the
driver, r the time delay in driver's response, and f(¢) the external disturbance.

As discussed in Subsection 1.1.2, the tyre forces are described by means of the
truncated Magic formula

ar

F,=-C\[arctan( Viar )-8 ; +C;[arctan( s )6, T,
U u (3.6.22)
V-br V-br 3 o
F =-D,[arctan( U )-6, +D;[arctan( U )-4.1,

where C,, C;, D, and D, are positive parameters. In addition, the bilinear con-
trol strategy between the front and rear steering angles is implemented

8,=ks8, +k,r, (3.6.23)

where

_2(aC,—bD))+mU*

: (3.6.24)
D, 2DU

The vehicle is said to be under-steered or over-steered if aC,—bD, is negative or
positive, respectively. In what follows, the system parameters are taken as m =
1,300 kg, I, =3,000 kgm’,a=1.0m, b = 1.6 m, C, = 44,400 N/rad, D, = 43,600
N/rad for under-steered case or 25,600 N/rd for over-steered case, C; = 44,400
N/rad®, D, = 44,400 N/rad®, 7, = 0.2s and K, = 0.02.

As studied in (Hu and Wu 2000), this four-wheel-steering vehicle has 9 steady
state motions, including a trivial one. After some necessary manipulations, we can
get the characteristic function of the linearized equations corresponding to the
trivial solution as follows

D(4,7)=2 +a, A +a, 2’ +a, A’ +a,A+a
(4,7) a, a, 2 1 0 i ) (3.6.25)
=2 e A Hep A +ep A (e e, A +e dte)e ™,
where
a,=cy+c,e " ,i=0,1,2,3,4,

=0, ¢,=0,
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2
Coz =m[mU2(bD] —-aC))+2C,D,(a+b)a+b+k,U)],
Cos =%[IZU(C1 +D))+mt U*(bD,-aC,)+mU(a’C,+b*D,)
mt I.U
+bk,D,mU*+2t,C,D,(a+b)* +27,k,C,D,U(a+b)],
Coa = [2mz (a*C,+b*D,)+mUI_ +2¢ I (C,+D,)+27,bk, D,mU],
mt U,
4K, C,D,(a+b)(1—ky)
Co = >
mrtl,
_ 4K, C,D,(a+b)[b+2L+k,U+k;(a-2L)]
" mr 1, U ’
2K
¢, :sz[Zabcpl (I+kz)L+2(a+b)k,C,D,LU+2(a*ks+b*)LC,D,],

¢;=0, ¢,=0. (3.6.26)

According to the Routh-Hurwitz criterion, the trivial solution for 7=0 is asymp-
totically stable if and only if

a,>0, a,>0, a,a,-a,>0, a,a,a,—-a,a,—a;+a,a,>0,
a,a,a,a,—a,a.a,—a,a; +2a,a,a,-a;a,+a,a,a,—a; >0. (3.6.27)
It is easy to derive the polynomial F(®) defined by Eq. (3.3.5)
F(@)=0"" +(cgy —2¢13)0° +(cg = ¢y =200 J0° +
(cop =iy +2¢p56,)@" +(2¢56,0 =1y Yo’ _0120 . (3.6.28)

It has at least one positive root since F(0)=—c? <0 and F(+w0)—>+w. Thus, the
system can not be delay-independent stable. Using the MAPLE routine discr gives
the discrimination sequence of F(®) as following

1, dy, dyd,, dd,, ..., dd,, d>dj. (3.6.29)

As the expressions of dg and d, are lengthy, the terms of the discrimination se-
quence are not presented here. In what follows, attention will be paid to the fol-
lowing parameter combinations

A={(L,U)|5m/s<U <40m/s,10m< L <120m} . (3.6.30)
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When the vehicle is under-steered, it is easy to know that the Routh-Hurwitz
stability conditions are true in the whole region A given by Eq. (3.6.30). That is,
the vehicle is asymptotically stable for 7=0. When >0, we can readily find that
dy<0, d,>0, d;>0, d;>0, d,<0, d,>0 and d;>0. By plotting the graphs of
d,=0 and d,=0, we divide the region A on the plane of (L,U) into 5 sub-
regions as shown in Fig. 3.6.2a, where d,=0 determines the curves ¢, and c,,
and d,=0 gives c;. Table 3.6.2 lists the sign tables of the discrimination se-
quence and indicates that the numbers of variation of signs in all sign tables are
equal to 4. Thus, for each parameter combination in the given region, F(®) has
exactly 1 (=(10—2x4)/2) simple positive root. Once this positive root is found, it
is easy to obtain the minimal time delay 7, satisfying Egs. (3.5.6) and (3.5.7). As
a result, the system remains asymptotically stable when 0<r<r,, and becomes
unstable when 727, .

40 ~ 40p SRl
. A g, h
35 ¢ /4— ¢ m e,
30 10!/ " et
e 5
v I " 35% T —
20 G 20} “3 €4 _?('
A t L
\&— €2 ' L
15 \ 1
1 \ v
10— & v
e
. - ...~ — L T i@ 1
20 40 60 80 100 120 20 40 60 80 100 120
L L

Fig. 3.6.2. Parameter divisions on the plane of (L, U) for stability analysis of a four-wheel-
steering vehicle; a. the under-steered case, b. the over-steered case

Table 3.6.2. Sign tables of the discrimination sequence in the stability analysis of a four-
wheel-steering vehicle in under-steered case

Sub-region dyd, - d,; dg D, D, --- Dy D, 1-2s
LIIL V - +++-+-—++ t-1-111-1-1-1-11 2
I -—++++++—-+ 1-1-11111-1-11 2
VII —+—-+++—-++ 1-1-1-1-111-1-11 2




3.6 Stability Analysis of an Active Chassis 113

Table 3.6.3. Sign tables of the discrimination sequence in the stability analysis of a four-
wheel-steering vehicle in over-steered case

Sub-region dyd, -+ d;dy Dy D, -+ Dy D 1-2s
L II, VIII -ttt -+ -+ I1-1-111-1-1-1-11 2
1L, VII -—t++ -+ -+ + 1-1-11111-1-11 2
VI B S e S 1-1-111111-11 2
v —t+t++ -+ -+ 1-1-1111-1-1-11 2
VI -t -+ + -+ -+ 1-1-1-1-11-1-1-11 2

When the vehicle is over-steered, the region A is divided into 8 sub-regions,
which are numbered by L, I, ..., VIII, from the top to the bottom, respectively as
shown in Fig. 3.6.2b. The curve RHb here denotes the boundary determined by the
Routh-Hurwitz stability conditions for the system without time delay. The graph
of d,=0 here consists of two curves ¢, and ¢ . The graph of ds;=0 is composed
of two curves ¢, and c¢s. The graph of dg=0 is the same as that of d,=0, and is
composed of two curves ¢, and ¢s. The curve ¢, is the graph of d,=0. The sub-
region [ is the region where the system is unstable when 7=0, and the other sub-
regions are those that ensure the asymptotic stability of system without time delay.
Table 3.6.3 shows the sign tables of the discrimination sequence, and indicates
that the polynomial F(®) has only 1 (=(10-2x4)/2) simple positive root in all
sub-regions, except for the parameter combinations on the two common boundari-
es between sub-regions III and IV, as well as V and VII, where F(®) has repeat-
ed roots. In sub-region I, therefore, the system is unstable for any time delay. In
the other sub-regions, for almost all the parameter combinations, there exists a 7,
depending on the parameters so that the system is asymptotically stable for
7€[0, 7,] and unstable for all ze(z,, +0).

Here are two case studies: (a) U=30m/s and L=40m, (b) U=30m/s and
L=60m, corresponding to the under-steered and over-steered cases, respectively.
In the under-steered case, the critical time delays are 7,=0.2899 and 0.2108, and
the corresponding frequencies are @ =2.4586 and 3.3027, respectively. In the
over-steered case, the critical time delays are 7,=0.1943 and 0.1412, while the
corresponding frequencies are @ =2.6654 and 3.4454, respectively.

In summary, for the four-wheel-steering vehicle with a time delay in driver's re-
sponse taken into account, the stability behavior of the system is relatively simple.
As the time delay increases from zero to the positive infinity, there are only two
possible cases. If the system free of time delay is unstable, it is unstable for any
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time delay. Or, there exists a critical time delay 7,>0 such that the system re-
mains asymptotically stable when 7€[0, 7,) and becomes unstable as long as
27, if the system free of time delay is asymptotically stable. As shown by the
numerical examples, the critical time delays are usually very short. Thus, the delay
response of a driver may induce undesirable instability of a four-wheel-steering

vehicle.




4 Robust Stability of Linear Delay Systems

Difference always exists between a real dynamic system and its mathematical
model because of the simplification in modeling, the measurement errors of sys-
tem parameters, and so on. It is very natural, hence, to study the dynamic systems
governed by differential equations involving a number of uncertain parameters. In
practice, a dynamic system should be robust stable. The problem of robust stabil-
ity of linear dynamic systems can be roughly stated as follows. Given a family 2
of linear dynamic systems and a set D on the complex plane, how to construct a
computationally tractable technique to determine whether the characteristic roots
of every system in (2 fall into D . This problem is usually referred to as the D-
stability of €2 . For the stability analysis of a continuous-time dynamic system, D
should be the open left half-plane of the complex plane, whereas D should be an
open unite circular disk on the complex plane for the stability analysis of a dis-
crete-time dynamic system. As a special, but very important case of D-stability, a
system is said to be interval stable if it is asymptotically stable under all parameter
combinations when some uncertain parameters vary on their pre-specified inter-
vals respectively.

The robust stability of linear dynamic systems has been intensively studied over
the past decade. As well known, the robust stability of a linear dynamic system
can be also determined by checking the location of its characteristic roots. For the
dynamic system described by a set of linear ordinary differential equations, an im-
portant discovery on the interval stability was made in (Kharitonov 1979). It was
proved that the interval stability of a family of characteristic polynomials, whose
coefficients vary independently in corresponding intervals, is governed by the sta-
bility of four special characteristic polynomials. Afterwards, the so-called Edge
theorem was established in (Bartlett et al. 1988) for the D -stability of a polytope
£2 pgenerated by the convex hull of a finite number of polynomials. The edge
theorem states that given a simply connected set D on the complex plane, a
polytope €2 of real polynomials, namely the convex hull of a finite number of re-
al polynomials, is D -stable if and only if the set of exposed edges of £2 is D -
stable: The methods for robust stability analysis of polynomials under parametric
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uncertainties have been comprehensively described in (Bhattacharyya et al. 1995).
However, no finite testing set, like that in the Kharitonov theorem in (Huang
1992), exists for the D -stability in general.

As for delay differential systems, the edge theorem was extended to the D-
stability of a polytopic family of quasi-polynomials in (Fu et al. 1989), where an
effective graphical method, based on the Nyquist diagram of frequency response,
was also presented for the D -stability. A similar problem was studied in (Barmish
and Shi 1989) by means of a different frequency domain technique. The interval
stability for differential equations with a single uncertain time delay was dealt
with in (Tsypkin and Fu 1993) by using the Nyquist diagram of frequency re-
sponse. A numerical algorithm was suggested in (Kogan and Leizarowitz 1995) to
testify the interval stability of delayed dynamic systems through the use of the
zero-exclusion criterion. In (Kharitonov and Zhabko 1994), the problem of se-
lecting the test sets for the robust stability was discussed for some special families
of quasi-polynomials.

In this chapter, some stability criteria are first presented for the one-parameter
family of quasi-polynomials generated by the convex hull of two quasi-
polynomials. Then the edge theorem for polytopic family of quasi-polynomials is
introduced and some stability criteria are given. Afterwards, the robust stability is
analyzed for a linear system with uncertain commensurate time delays, but the co-
efficients of corresponding characteristic quasi-polynomial depend linearly on
some other uncertain parameters. As pointed out in (Blondel and Tsitsiklis 2000),
this problem of robust stability is an NP-hard problem due to the uncertainty of
time delays. The term "NP-hard" is usually interpreted as an indication of inherent
intractability. With help of Dixon's resultant elimination, the sufficient and neces-
sary conditions are derived for the robust stability of this type of delayed dynamic
systems, and then a graphic test for the robust stability is presented.

4.1 Robust Stability of a One-parameter Family of Quasi-
polynomials

This section deals with the robust stability of a one-parameter family of quasi-
polynomials generated by the convex combination of two quasi-polynomials
p(A4) and p,(A) of the same order n defined as

R=convipyA)sps A =tpps)=(1~11) p,(D)+u p,(A)| 1el0, 11} .(4.1.1)
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It is essential to test the robust stability of this one-parameter family in applying
the edge theorem to be discussed in the next section. For simplicity, the family 2
is said to be Hurwitz stable if every element of (2 is Hurwitz stable, namely, the
roots of every quasi-polynomial in (2 have negative real parts. Obviously, Q2 is
Hurwitz stable if and only if the value set {plz(/l,,u)| P €2, ReA20, uel0,1}}
does not contain zero. That is the zero-exclusion criterion.

4.1.1 Non-convexity of the Set of Hurwitz Stable Quasi-polynomials

In general, the stability of both p,(1) and p,(1) can not guarantee the stability
of the whole family 2. This fact will be demonstrated through the following two
examples.

Example 4.1.1 According to the Routh-Hurwitz criterion, it is easy to know
that the polynomial

p(A)=a A’ +a,A* +a,A+a, (4.1.2)
with a positive leading coefficient a, is Hurwitz stable if and only if
a,>0, a,>0, a,a,—ay,a;>0. (4.1.3)
Thus, the following two polynomials are Hurwitz stable

P (A)=052 + A2 +A+1.7, p,(D)=L7L +A* +1+0.5, 4.1.4)

because a,a,—a,a;=0.5>0 holds for both polynomials. However, the following
linear combination of these two polynomials

P (A)=0.5p,(A)+0.5p,(A)= LIL + A +A+1.1 (4.1.5)

is not Hurwitz stable since a,a, —ay,a;=-0.21<0 holds.
Example 4.1.2 We first consider a quasi-polynomial

g(A)=A+e*. (4.1.6)

Using Theorem 2.2.7, we have M(w)=w—sinw, and N(w)=—cosw . The unique
root of M(w) is w=0, so m=0. Hence, all the conditions in Theorem 2.2.7 hold,
ie., g(0)20, 1/2+1/2sgnN(0)=0. We can also confirm the Hurwitz stability of
Eq. (4.1.6) from Fig. 4.1.1, where the Nyquist diagram of g(iw)/(iw+1) does not
encircle the origin of the complex plane.
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Fig. 4.1.1. The Nyquist diagram of g(iw)/(iw+1)

Now, we check the Hurwitz stability of the following quasi-polynomial
p(Ak)=q* (A)+k, k=0. 4.1.7)

It is easy to see that p(4,0) is Hurwitz stable. Furthermore, we can show that the
stability of p(4,k) changes as & increases from zero. Separating the real and
imaginary parts of the marginal stability condition p(iw,k)=0 gives two sets of
equations

2w+k=0
{Cf’s W=D (4.1.82)
sinw—w=0,
or
24 —k=
o 20+1 'k O,_ (4.1.8b)
cosw=0, sinw=Fl1.

Obviously, Eq. (4.1.8a) is not true for any £>0. Solving Eq. (4.1.8b) for @ and
k vields

0=, Egﬂm, k=k, E[§+nn—(—l)"]2, n=0,1,2, ... (4.1.9)

Direct computation shows that

d(Red)
dk

sgn[ iy ]=CD" (4.1.10)

Thus, with an increase of &, the crossing of a characteristic root at k,,, /=0, 1,
2, .... must be from the left to the right. That is, p(A4,k) always increases a new
pair of conjugate characteristic roots with positive real part for each crossing at
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values of k,,. On the contrary, the crossing of a characteristic root at k,,,,, /=0,
1, 2, ... must be from the right to the left with an increase of & and p(A4,k) de-
creases such a pair of characteristic roots for each crossing at values of k,,,, . As a
result, p(4,k) changes its stability as & is crossing k, . That is, it is Hurwitz sta-
ble for k€0, k,), (ki, k2), ..., (kyys ka2142) 5 -.., but unstable for ke (k,, k),
(kys k3), ooy (kyys kopy) 5 ... Choosing 20 € (ky,k;) and 40 € (k,,k,), we know
that p(4,20)is unstable and p(A,40)is stable. The Nyquist diagrams in Figs.
4.1.2 and 4.1.3 show alternatively the instability of p(4,20) and the stability of
p(4,40).

Let p,(1)=p(4,0) and p,(4)=p(1,40), then the Hurwitz stability of p, (1)
and p,(A) can not guarantee the robust Hurwitz stability of the whole family
Q={p,(Au)=(1=p)p,(A)+ps(A) | pel0, 1]} since py,(4,1/2)=p(4,20)e is
not Hurwitz stable.
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Fig. 4.1.2. The Nyquist diagram of p(i®,20)/(iw+1)*, where 20 € (k,, ky)
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Fig. 4.1.3. The Nyquist diagram of p(i®,40)/(iw+1)*, where 40 € (k,,k,)
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4.1.2 Sufficient and Necessary Conditions for Interval Stability

The fact that each root A(x) of p(A,u) depends continuously on parameter u
leads to the following theorem.

Theorem 4.1.1 The family 2 is Hurwitz stable if and only if

(a) p,(A) or p,(4) is Hurwitz stable,

() pi,(iw,u)=0 holds for all weR and all ug[0, 1].

Proof The necessity is obvious, so only the sufficiency is to be proved. Because
p(4,4) is analytic with respect to A and g, the sum of the multiplicity of roots
of p(4,u)=0 on the open right half-plane can change only if a root appears on or
crosses the imaginary axis as g varies. Noting that p,(1) or p,(1) is Hurwitz
stable and p,(iw,u)#0 holds true for all weR and all xe[0, 1], we make sure
that the sum of the multiplicity of roots of p;,(4,1) =0 on the open right half-
plane remains unchanged and equals to zero as p varies. That is, p(4,u) is
Hurwitz stable for all x#<[0, 1]. This completes the proof.

Remark 4.1.1 The inequality p,(iw,u)#0 holds true for sufficiently large
w>w,. Thus, it is required checking the inequality only on a finite domain
[0, w, ]x[0, 1].

Next, let

R,(®)=Re[p,(i®)], S, (0)=Im[p,(iw)], j=1,2. (4.1.11)

If there is any pair (@,u)<[0, @, %[0, 1] such that p,,(iw,u)=0, then

{(1—;1)R, (@)+ 1R, (@)=0, (4.1.12)
(-p)S8, (@)+uS, (@)=0.
The fact that 1—x and 4 does not vanish at the same time results in
det] 1@ Ra(@))_ B S (@)= R, (@)S, (0)=0 (4.1.13)
i@ s, OO BER @0 -

If Eq. (4.1.13) has no root for (@,u)e (o,1)€[0, @,]x[0, 1], then p,,(iw,u)+#0
holds true on this region.

Theorem 4.1.2 The polytope (2 defined in Eq. (4.1.1) is Hurwitz stable if and
only if the following two conditions hold.

(a) The quasi-polynomial p,(A1) is Hurwitz stable.

(b) For any root w,€R of Eq. (4.1.13), if R,(w,)R,(®,)=0, then

R, (@y)R, (©,)>0 . (4.1.14a)
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If Eq. (4.1.13) has a non-negative root @,20 such that R, (@,)=0 or R,(w,)=0,
then Eq. (4.1.14a) should be replaced by the following

S,(@)S,(@,)>0 . (4.1.14b)

Proof We first look at the necessity. Condition (a) is obviously necessary. To
prove the necessity of condition (b), we first consider the case R,(wy)R,(w,)#0 .
Assume on the contrary that the following inequality holds

R(wy)R,(®,)<0. (4.1.15)
Then, we have R,(w,)/R,(w,)<0 and 1-R,(®@,)/R,(w,)>1. There follows

R,(®,) _ 1
Ry(@))~R (®,) 1-R,(0,)/R,(@,)

1, (4.1.16)

namely,

R,(®,)

— (0, 1). 4.1.17
Rz(wo)_Rl(wo)E( ) ( )

Denote the value of the expression in Eq. (4.1.17) by 1-4,, where #,€(0,1).
Then, we have

(=py)R (@y )+ 1R, (04)=0. (4.1.18)
According to Eq. (4.1.13), it is also true that

(A=p0)S (@) + 1S, (@4)=0. (4.1.19)
Combining Eq. (4.1.18) with Eq. (4.1.19) gives

(A=pg)p(@y)+ 1o p, (1@,)=0. (4.1.20)

When R (wy)=0 or R,(w,)=0, the same procedure for the case
R, (@¢)R,(w,)#0 can also be applied to show that there exists a g, [0, 1] such
that Eq. (4.1.19) holds, and in turn Eq. (4.1.20) holds true if we assume on the
contrary that S,(@,)S,(®,)<0 holds. Eq. (4.1.20) means that at least one of the
quasi-polynomials in the polytope 2 has a root on the imaginary axis. This as-
sertion contradicts the Hurwitz stability of polytope (2. Therefore, condition (b)
is necessary.

To prove the sufficiency, assume that p,(A1) is Hurwitz stable and condition
(b) holds. Note that Eq. (4.1.14) is equivalent to

R,(w,) 2[0, 1] S,(w,)

R, (@)~R,(@,) mﬁ[a 1]. (4.121)



122 4 Robust Stability of Linear Delay Systems

This indicates that for each €[0, 1], any solution @, of Eq. (4.1.13) does not
satisfy Eq. (4.1.18) or correspondingly Eq. (4.1.19). Hence, we have
(1=120) p; (iwg )+ up, (i, )#0 , namely, Eq. (4.1.20) holds for all x€[0, 1}. Thus,
the roots of (1-x)p,(1)+up,(A) do not cross the imaginary axis as g varies. As
all the roots of p,(A1) stay on the open left half-plane of the complex plane, so do
the roots of all (1-u)p,(1)+up,(A) for all uel0, 1]. This fact implies that all
the quasi-polynomials in the convex combination generated by p,(4) and p,(A4)
are Hurwitz stable. This completes the proof of Theorem 4.1.2.

Because Eq. (4.1.13) is independent of x, all the roots of Eq. (4.1.13) can al-
ways be figured out numerically. Then, the stability analysis can be easily com-
pleted.

The robust Hurwitz stability of 2 can also be analyzed by using the functions
of phase angle defined as following

p;(w)=arg[p;(iw)], j=L2. (4.1.22)

Theorem 4.1.3 The family £2 is robust Hurwitz stable if and only if
(@) p;(4) and p,(A) are Hurwitz stable,
(b) ¢, (®)-@,(@)=xn for any we[0, +o0).

Proof To prove the necessity, assume that (2 is robust Hurwitz stable, but, on
the contrary, there exists an @,€R such that

@, (@,)—p,(w,)=1m. (4.1.23)

If R (@y)=0 or R,(w,)=0, Eq. (4.1.23) obviously results in S,(@,)S,(w,)<0.
When R, (w,)R,(w,)#0, Eq. (4.1.23) gives tang, (@,)=tang,(w,) , namely,

Sl(a)o)_Sz(wo)

= . (4.1.24)
R(®w,) R,(®,)

This equation is equivalent to Eq. (4.1.13). In addition, Eq. (4.1.23) leads to the
inequality R,(@y)R,(®,)<0. Both cases contradict condition (b) in Theorem
4.1.2. Hence, condition (b) is necessary.

On the other hand, if condition (b) is true, Egs. (4.1.23), (4.1.24) and (4.1.13)
do not hold. Hence, p,,(iw,u)#0 holds for all (@,u)e [0, @,]x[0, 1]. In other
words, the stability of one-parameter family can not change as x varies on [0, 1].
Because p,(1) and p,(A) are Hurwitz stable, 2 must be Hurwitz stable. This
completes the proof of Theorem 4.1.3.
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Besides the functions of phase angle, the Nyquist diagrams can also be used to
analyze the robust Hurwitz stability of family (2 as shown in the following theo-
rem.

Theorem 4.1.4 The family (2 is robust Hurwitz stable if and only if

(a) the Nyquist diagram of p,(i@w)/(iw+1)" does not encircle the origin,

(b) the Nyquist diagram of p,(iw)/p,(iw) does not intersect the non-positive
part of the real axis.

Proof As stated in Theorem 2.2.11, the Nyquist diagram of p,(iw)/(iw+1)"
does not encircle the origin if and only if p,(1) is Hurwitz stable. Assume that
p(A) is Hurwitz stable, it is required proving that condition (b) is necessary and
sufficient for the Hurwitz stability of p,,(4,4) when ue(0, 1].

To see the necessity, note that the Hurwitz stability of p,,(A4,4) implies

(=) p,(i0)+up,(iw)#0 (4.1.25)

for all weR and uel0, 1]. As p,(4) is Hurwitz stable, p,(iw)=0 holds for all
@eR . From this fact and x>0, we can recast Eq. (4.1.25) as

1_—ﬂ+M¢O . (4.1.26)
u o piw)
Observing that (1—u)/u takes values on [0, +o0) when u varies on (0, 1], we
conclude that condition (b) is necessary for the stability of p(4,u), ue(0, 1].

To prove the sufficiency of condition (b), suppose, on the contrary, that there
exists a positive number 2 (0, 1] such that p,,(A4,4) is not Hurwitz stable even
though condition (b) holds. Then, p,,(4,i) has a root A(x), which depends
continuously on u and has a non-negative real part when u=j. As p,;(1) is
Hurwitz stable, A(0) has negative real part. Hence, there must exist a positive
number zi€(0, z] such that Re[A(f)]=0. This fact gives

Pz (0, 5)=(1~ D) p, (i) + i p, (i®)=0 . (4.1.27)

Equation (4.1.27) implies that p,(iw)/p,(iw)<0 since >0 and 1-7>0 hold.
This is in contradiction with condition (b). Therefore, condition (b) is sufficient
for the stability of p,(A,u) forany (0, 1]. The proof is completed.

Example 4.1.3 Check the robust Hurwitz stability of

Q=conv{p(1,0), p(1,0.32)}={p(1,k)=q" (A)+k | kel0, 0.32]}.(4.1.28)

As shown in Example 4.1.2, p(1,0) is Hurwitz stable. Now, Fig. 4.1.4 indicates
that the Nyquist diagram of p(i@,0.32)/(iw+1)? does not encircle the origin of the
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complex plane. Hence, the quasi-polynomial p(A4,0.32) is Hurwitz stable. In Fig.
4.1.5, the Nyquist diagram of p(i®,0.32)/ p(i®,0) does not intersect the non-
positive part of the real axis. According to Theorem 4.1.4, the family 2 is robust
Hurwitz stable.
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Fig. 4.1.4. The Nyquist diagram of p(i®,0.32)/(iw+1)*
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Fig. 4.1.5. The Nyquist diagram of p(i®,0.32)/ p(i®,0)

4.2 Edge Theorem for a Polytopic Family of Quasi-
polynomials

This section is devoted to the robust Hurwitz stability of a polytope of quasi-
polynomials. Roughly speaking, a polytope is the convex hull of a finite number
of quasi-polynomials, which are called the vertex quasi-polynomials. What we are
concern with is to determine whether or not every member of the polytope is
Hurwitz stable. As seen in Subsection 4.1.1, the stability of the vertex quasi-
polynomials is not able to guarantee the robust stability of the whole family in
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general. The edge theorem, which will be presented later in this section, shows
that the stability of the entire family is governed by the edge quasi-polynomials,
which are defined as the convex combination of two vertex quasi-polynomials.

4.2.1 Probiem Formulation

Consider a type of linear dynamic systems with multiple time delays

/
Bx(1)=)_A,(9)x(t-7;), xeR", (4.2.1)
=0
where 0=7,<7,<---<7, represent the constant time delays, BeR™" is a nonsin-
gular matrix, and 4,(q)eR™", j=0,1,...,] are the constant matrices with an un-
certain parametric vector ¢, which falls into a given box of dimension(s) s

q€0={(9,.9,,9,) | 4,59,<q,, 1<i<s}cR’. (4.2.2)

The uncertainties mentioned above may come from the simplification in system
modeling, or the measurement errors of system parameters and time delays.
The characteristic function of Eq. (4.2.1) is a quasi-polynomial of order »

1
P(A)=det{ 2B~ e 7" 4,(q)]
=0

" y 42.3)
=ag (A" +[) ay (@ I 44D a, (9,

k=1 k=1

where ay#0, 0=r,<r <--<r, are linear combinations of z;, and the coeffi-
cients a;(q) may depend linearly or nonlinearly on g . Of course, ap=1 can be
set if p(A) is replaced by p(A)=detlAI-Y'_ e "*B™'4,(¢)]. It is of interest to
check the robust Hurwitz stability of the system for all admissible parametric per-
turbations.

Mathematically speaking, we study the interval Hurwitz stability of a family of

quasi-polynomials of order # as following

Q={p(D=an@F + LY a, @™ 11 | ay 20, geQcR'}. (42.4)

j=1 k=1
The family 2 of quasi-polynomials is said to be Hurwitz stable if and only if all
the roots of each member of (2 stay on the open left half-plane.

If the coefficientsyay(q)are:assumed:to depend linearly on ¢, then the family
£ defined above can be regarded as a polytope generated by the convex combi-
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nations of a number of quasi-polynomials p,(1), p,(1), ..., p,(4) of order r in
Eq. (4.2.3). That is,

Q=convip,(1), p,(A) ..., p,(A) }. 4.2.5)

Here, the quasi-polynomials p;(4), j=1..,r are called the vertex quasi-
polynomials, or the generators, of 2.

Let E[£2] denote the set of all edges of the polytope (2. An edge of polytope
£2 is a one-dimensional, closed segment [x,y]=conv{x,y} in £2 such that for
any open segment (x,,y,)=conv{x,,y,}\{x,,¥,} In 2 intersecting [x, y], we
have [xy,y,]<[x,y]. An edge of 2 is in the form of conv{ p;(1), p;(1) }, but
not all such closed segments are necessarily the edges. Given two quasi-
polynomials p,(4)# p,(4), for example, conv{ p;(1), p,(1) } is not an edge if
p5(A) is chosen as [p, (1)+p,(1)]/2.

For a quasi-polynomial p(A) of order # given by Eq. (4.2.3), let the coefficient
vector of p(A) be defined by

p=lag @ = Gy e ay e ay ]l (4.2.6)

Obviously, there is a one-to-one relation between the set of quasi-polynomials in
Eq. (4.2.4) and the set of their coefficient vectors. For a complex number A, the
real and imaginary parts of p(41)=0 can be expressed in terms of two linear equa-
tions with respect to vector p. Then, it is straightforward to show that A is a root
of p(1) if and only if

K(/i)p:O , K(A)GRZX(HN+n+1) , (427)

where the entries of matrix K(A) are in terms of Re(e™*1"7) and
Im(e ™4 A").

For a polytope (2 of quasi-polynomials of order » given by Eq. (4.2.4) and a
complex number &, the value set of (2 with respect to £ is defined as

V(2,6)={K(&)p | p(A)e}. (42.8)

For a polytope £2 of quasi-polynomials and a fixed &, V(£2,£) is a polytope on
the complex plane. The following lemma is obviously true.

Lemma 4.2.1 A given polytope 2 of quasi-polynomials in Eq. (4.2.5) is Hur-
witz stable if and only if V' (£2,£) with Re£>0 does not contain any zeros.

For all p(4)ef2 and ReA>0, p(A)=an A" +O(A"") holds as |A|—=>+c0 . Thus,
there exists-a-sufficiently large.constant; />0 such that Og¢ V'(€2,1) for all 4
with Re420 and |A|2M .
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4.2.2 Edge Theorem

Theorem 4.2.1 A polytope 2 of quasi-polynomials of order n given by Eq.
(4.2.4) is Hurwitz stable if and only if E[£2], the set of all edges of €2, is Hur-
witz stable.

The following lemma is essential in the proof, and also helpful in the under-
standing, of Theorem 4.2.1.

Lemma 4.2.2 Consider a polytope €2 of quasi-polynomials of order »n given by
Eq. (4.2.4) and V(£2,£) defined in Eq. (4.2.8). For any Re£>0, we have

E[V(£2,5)]c V(E[£2].$) (4.2.9)

where E[V] represents the set of all edges of V', respectively.

The proof of Theorem 4.2.1 and Lemma 4.2.2 are not given in this book be-
cause it requires much knowledge about convex analysis.

Remark 4.2.1 Though the above statements are made for the Hurwitz stability,
they are also valid in a more general frame of D-stability. For details, it is referred
to (Fu et al. 1989).

4.2.3 Sufficient and Necessary Conditions

On the basis of the edge theorem, the key step in the stability analysis of a polyto-
pe of quasi-polynomials is to check the robust Hurwitz stability of the edge gener-
ated by two quasi-polynomials. Each edge generated by two quasi-polynomials
pi(4) and p;(A) corresponds to a one-parameter family of quasi-polynomials as
following

Py (Aw)=(-)p,(A)+up (A1), nelo, 1]. (4.2.10)

Let R;(w)=Re[p;(iw)] and S;(w)=Im[p,(iw)], then, using Theorem 4.1.2,
Theorem 4.1.3 and Theorem 4.1.4 gives the following theorems.

Theorem 4.2.2 The polytope (2 defined in Eq. (4.2.5) is Hurwitz stable if and
only if the following two conditions hold true.

(a) All vertex quasi-polynomials of (2 are Hurwitz stable.

(b) For each edge between p;(4) and p;(A), if there is an wyeR such that

R, (@y)S ;(0,)-R;(0,)S,(@,)=0, (4.2.11)
then either

R(@)R (,)>0 (4.2.12a)
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holds for R;(@wy)R;(w,)#0, or

S,(@,)S ,()>0 (4.2.12b)

is true when R, (@,)R,(@,)=0.

Theorem 4.2.3 The family 2 defined in Eq. (4.2.5) is Hurwitz stable if and
only if the following two conditions hold.

(a) All vertex quasi-polynomials of (2 are Hurwitz stable.

(b) For each edge between p;(4) and p;(A1), the phase functions satisfy

9, (0)-¢, (w)#in . (4.2.13)

Theorem 4.2.4 Let E,, E,, ..., E, be the edges of the polytope defined in Eq.
(4.2.5), pio(A) and p,, (1) be the vertex quasi-polynomials of £, . Then, £ is
Hurwitz stable if and only if the following two conditions hold for each edge E, .

(a) The Nyquist diagram of p,,(i@)/(iw+1)" does not encircle the origin of the
complex plane.

(b) The Nyquist diagram of p,,(i®)/ p,,(i®) does not cross the non-negative
part of the real axis.

The testing procedure of vertex quasi-polynomials can be organized this way.
First, check the Hurwitz stability on an arbitrarily chosen vertex, say, p;o(A4).
Then, check the robust Hurwitz stability of the edges, which contain p,,(1), ac-
cording to condition (b) mentioned above. Afterwards, testify the stability of the
edges that share a vertex with one of the previous edges, and so on. Because the
set of edges of a polytope is connected, the robust Hurwitz stability of all edges
can be verified this way in a finite number of steps.

By the way, some results are available to reduce the number of edge quasi-
polynomials to be testified in the stability analysis. See, for example, (Kharitonov
and Zhabko 1994).

Example 4.2.1 Study the robust Hurwitz stability of a polytope of quasi-
polynomials as following

Q={p(A,k,h) | ke[-0.0144, —0.0029], he[0.739, 2.58]}

(4.2.14)
=conv{p,(4), p,(4), p,(4), p;(1)},

where

P(A ke )=h2 +(6h+1) 17 +(13.75h+6+1.82he "'%* +0.42he ") A

+13.75+1.82¢ ™' +(0.42-1305k)e
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po(A)= p(4,-0.0144,0.739), p,(A)= p(A,—0.0144,2.58),

p,(A)= p(4,-0.0029,2.58), p;(A)= p(4,~0.0029,0.739).  (4.2.15)
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Fig. 4.2.1. The Nyquist diagram for the stability test of the vertex quasi-polynomial py(1)
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From Theorem 4.2.3, we see that 2 is robust Hurwitz stable due to the follow-
ing two facts.

(a) The Nyquist diagram of p,(iw)/(iw+1)’ does not encircle the origin of the
complex plane as shown in Fig. 4.2.1. This implies that the vertex quasi-
polynomial of p;(A1) is Hurwitz stable.

(b) As shown in Fig. 4.2.2, the Nyquist diagrams of p,(iw) / p,(iw) ,
p.(iw)/ p,(iw), p;(iw)/ p,(iw) and py(iw)/ p;(iw) do not intersect with the
non-negative real axis so that the four edge quasi-polynomials are robust Hurwitz
stable. For instance, the Nyquist diagrams of p,(iw)/ p,(iw) indicates that the
edge quasi-polynomial generated by p,(1) and p,(1) is robust Hurwitz stable.

4.3 Dixon's Resultant Elimination

In order to determine the condition of marginal stability when a system has a
number of commensurate time delays, one usually needs to solve two polynomial
equations. Dixon's resultant elimination, see (Dixon 1908) and (Yang et al.
1996b), is one of the most effective algorithms to solve polynomial equations
though these polynomial equations may not have any solutions in closed form.
The basic principle of resultant elimination includes two steps. First, a set of poly-
nomial equations is constructed from the given polynomial equations and regarded
as a set of linear equations with respect to the different powers of unknown vari-
ables. Then, the original polynomial equations are studied on the basis of theory of
linear matrix equation. The Dixon’s resultant elimination can be used to the stabil-
ity analysis of polynomials and quasi-polynomials.

4.3.1 Dixon's Resultant Elimination

To acquire a good understanding of the Dixon’s resultant elimination, we first
consider two polynomials f(x) and g(x)of order n, and define

1 [f(x) g(x)}zﬂx)g(a)—f(a)g(xx @3.1)

5(x,a)5;:z‘(—det f(a) g(a) —a

Obviously, d(x,a) is a polynomial of order n—1 with respect to x and a, re-
spectively. At any common root x, of f(x) and g(x), the polynomial J(x,a)
vanishes-for-any-value-a--Hences - the-coefficients ¢;(x,), i=0, 1, ..., n—1 of
d(x,) with respect to @ also vanish. That is,
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¢,(x,)=0, i=0,1,..., n-1. (43.2)

Let the distinct powers of x be denoted by e,=x"", ..., e,,=x, e,=x"=1, then
we can rewrite the equations in Eq. (4.3.2) in the form of linear matrix equation

e | |0

0
M (43.3)

e 0

The determinant of coefficient matrix M , which is the Bezout resultant of f(x)
and g(x), must be zero since Eq. (4.3.3) has non-zero solution. That is to say,
detM=0 if f(x) and g(x) has common roots.

If the degrees of f(x) and g(x) satisfy deg(f,x)=n>m=deg(g,x), this pro-
cedure can also be performed with f(x) and 0-x"+--- 0-x™"'+ g(x).

Now we consider three polynomial equations in two unknowns x and y

PS: fi(x,)=0, f,(x,y)=0, f;(x,y)=0, (43.4)

and introduce Dixon’s resultant. Though it is possible to elucidate the method of
Dixon's resultant elimination in a more general frame, the following results are
enough for the purpose of stability analysis. We first define a polynomial in new
variables @ and f in the form of a determinant

fiy)  f,(6y) fi(x)
Ax,ysa,f)=det| fi(a,y) frla.y) fi(a,y)|. (4.3.5)
fe.p) fi(e.p) fiap)

Because A(a,y;a,f)=0 and A(x,B;a,0)=0, A(x,y;x,) must possess a factor
(x—a)(y—p) . Thus, we introduce a new polynomial

Ax.y:a.p)
S(x,y;a,f)y=—""—" 4.3.6
D B @30

and refer to it as the Dixon's reduced polynomial of PS . Similar to the above
simple case, this reduced polynomial severs as a bridge to express Eq. (4.3.4)
in terms of linear matrix equation. If we expand f,(x,y) as

P4
S =2 efx'y, k=123 (4.3.7)

i=0 j=0

then we have
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2p-1g-1 p-12g9-1

S(x, y;a, B) = ZZ dyx'y'a*p'. (4.3.8)

0 /=0 i=0 j=0

]

>
I}

Example 4.3.1 Consider three polynomials in two variables s and ¢
P (s,)=(s>+5°0)x—5"t+t+5> +1,
P, (s,0)=(s> +s*t)y—s’t—s+t,
Ps(s,)=(s>+5*1)z-25> +2t+2 . (4.3.9)
Straightforward computation gives

pi(st)  py(sit)  psy(s.t)
A(s.te, f)=det| pi(at)  p,(a.t)  py(at)
pl(a’ﬂ) pZ(aaﬁ) p3(a918)

pl(s5t)_p1(a=t) V2 (S,t)—p2 (a’t) Ps (S?t)_pS (aat)
:det p] (a9t)_pl (a’ﬂ) p2 (a’t)_p2 (aaﬂ) p} (aat)_p3 (aaﬂ)

p@ph  p@p) pap | 0
=(s—a)(t—ﬁ)(cla3+cza2+c3a+c4).
Thus, the Dixon’s reduced polynomial is
S(s,t;a, B)= @’ +c,a’ +eya+e,, (4.3.11a)
where
¢, =2x+2z-2)s+(6y—4x—z-2)t+6y—-2x+z-4,
c,=(6y—4x-z=-2)st+(6y—-2x+z—4)s+(2x—z-2)t+2x-z-2,
¢ =(2x—z-2)st+(2x—z+4)s+(2x—z-2)t+2x+z-4,
¢, =(2x-z-2)st+(2x—z+4)s . (4.3.11b)
Here, p=2,9=1, so the distinct powers of ¢ and B are «*, a?, a and 1,

while the distinct powers in & with respect to s and ¢ are s¢, s, ¢ and 1. The
number of distinct powers of & with respect to & and f is the same as that of
distinct powers of & with respectto s and ¢ . That is, they are 2 pq = 4.

We assume that different terms have different powers. Let c;(x,y) ,
j=12,---,2pq, denote the coefficients of 5(x,y;a,) with respect to the dis-
tinct powers of @ and £ in a properly given order of the powers. If (x,,y,) is a
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common root of PS, then 8(x,,v,;&,$) =0 holds true for any & and . As &
and S are free variables, (x,,y,) must satisfy

¢, (x,3)=0, ¢, (x,»)=0, ..., ¢, (x,y)=0. (4.3.12)

These equations are called the set of Dixon's reduced polynomial equations from
PS . Let the distinct powers be e, e,,:, €,, , =X, €,, =y, and e,, =1,
respectively, Eq. (4.3.12) can be recast as a linear matrix equation like Eq. (4.3.3).
If PS has any common real roots, then Eq. (4.3.3) has non-zero solution since
€, =1#0. Thus, the determinant J= detM , which is called the Dixon's resul-
tant of PS, must vanish if PS has any real common root. The above analysis
can be summarized as the following theorem.

Theorem 4.3.1 If the set of polynomial equations PS has a real solution, it is
necessary that the Dixon's resultant vanishes. Conversely, if Eq. (4.3.3) has a non-
zero solution which is compatible to the powers (e,e,,-, e,,, ), then PS has a
solution.

The Gauss elimination makes it possible to solve Eq. (4.3.3) recurrently by
transforming M into an upper-triangle matrix. If the solution of Eq. (4.3.3) is
compatible to the powers (e;,e;, -, €,,,), it is easy to determine the correspond-
ing x and y . Note that it is not necessary that all the terms in Eq. (4.3.7) appear
in stability analysis. Though some "zero" coefficients can be added to £, (x,y) in
this case to achieve such a complete form as mentioned in (Kapur et al. 1994), a
linear matrix equation like Eq. (4.3.3) is usually enough for our purpose.

Example 4.3.2 Consider the characteristic equation corresponding to a dynamic
system with two commensurate time delays

p(A,0)=L +(@+28) 2 +(1+2aé+ade ) A+aye** +a=0, (4.3.13)

where >0, £>0 and 7>0. The system free of time delays is asymptotically sta-
ble if and only if the following Routh-Hurwitz stability conditions are true

y+1>0, ay-a(a—28)0-2E-2a’E~4aé*<0. (4.3.14)
When 7>0, the marginal stability condition p(iw,7)=0 can be cast as
£ (x,y)=—0" (a+28)+adw y+2ay x* +a(1-y)=0,
PS:3 £, (x,y)=-0’ +o+2ato+adox—2ay x y=0, (4.3.15)
S (x,)=x?+y*~1=0,

wheresw=coswzrandsy=sinwz ThesDixon's reduced polynomial equations can
be derived and classified into two groups
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Gl: g,(x,)=0, i=1234, g, (x»)=0,
G2: g,(x,»)=0, i=1234, g,(x,y)=0, (4.3.16)
where
g =(l+y-0*)a-20é+adwy-2ayy’,
g,=0" —0-2afo-adwx+2ayxy,
g2,= [2adyoy+(2ay—4yé+ad’ Yo’ +2ay(y+1))x
+2yo[o’ —(1+2aé)]y -So' +éw* (1+2af),
g, =2yolo’ -(1+2a8)x-2aydwy* +[(ad* +4¢y +2ay)0’
=2ay(1+y)ly —(a+26)60’ +ad(-y)w,
g5 =0w-2yy,
g5, = o(1+2aé~0)x+[-(a+28)0* +a(l-y)]y+adw . (4.3.17)

For G1 in Eq. (4.3.16), let the distinct powers of x and y be denoted by
e=y*, e,=xy, e;=x, e,=y and es=1, then we have a linear matrix equation
Mile, --- e;]"=0. We find, through direct computation, that the corresponding
Dixon’s resultant is not zero and reads (up to a non-zero factor)

J(@)=0[0’ +(a’ +4£* -2)w*

(4.3.18)
+(4a*Er +1-2a° -2ya* ~4ayb)o’ +(y+1)*a’].

For G2, we can show that the corresponding Dixon's resultant yields J(w)=0.
Using the Gauss elimination transfers the corresponding Dixon’s matrix M into
the following form

[« * =* * *
O * * * *
M>M=0 0 a, a, a;| (4.3.19)
00 0 a, a;
00 0 0 0]

This gives a set of linear equations in unknowns x and y

{a219c+a22y+a23 =0, (4.3.20)
A y+a;3=0.
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Solving Eq. (4.3.20) for x and y, and then substituting them into x*+y*=1, we
have a polynomial J (@) with even order terms only

J(@)=0"+a,0" +a,0° +a,0° +a,0" +a,0” +a;, (4.3.21)
where

a,=—4+2a> +8&7,
a,=16a’¢* —a*5* —8a* +a* +6-16£7 +16£*,
a,=(8E% =57 )t +2[6+16&7 (7 ~1)+8° (1-2£7)-5" o’ +4(2&° -1),

a, =2(y+1-2E7)52 +8£2 (&2 -1)+3~y  la* +4a’ S5y
+[-82+82-yP)EX +4(y* -2)]a’ +],

as=a’{[~(1+7)* 62 +4(1-y*)(2&* -D]a’ +2(1-7*)}
ag=a’(-y%)*. (4.3.22)

In order that PS has common real roots, @ must be a real root of J(®w) or
J(w) . For any given a, &, ¥ and &, we can determine whether J(@) or J(w)
has real roots or not and find numerically all the real roots of J(w)=0 or J(@)=0
if there are any.

The stability switches of a linear system with a single time delay have been dis-
cussed in Subsection 3.5.1 by using the generalized Sturm criterion, which enables
one to determine whether the system exhibits no stability switch, exact one stabil-
ity switch or more than one stability switch under certain parameter combinations.
If the system undergoes more than one stability switch, however, we have to find
out numerically the critical values of time delay to obtain detailed information.
When commensurate time delays are involved in a system, the method of Dixon's
resultant elimination is effective for analyzing the stability switch.

As seen in Subsection 3.5.1, three main steps are involved in the analysis of
stability switches. First, find out all the possible critical frequencies and the corre-
sponding critical values of time delays. Then, determine the sign of the derivative
of real part of each characteristic root with respect to the time delay. Finally, rank
the critical values of time delays and count the number of stability switches.

Example 4.3.3 Check the stability switches of the dynamic system with two
commensurate time delays governed by Eq. (4.3.13) when

a=2,-£=0.02, %=03, 5=05. (4.3.23)
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It is easy to know that w=0 is the unique root of J(w), and the corresponding
polynomial Eq. (4.3.15) has no common real roots. The real roots of J(®) can be
numerically found out. They are w=+0.6428 and w=+1.1893. When
w==1.1893, the critical values of time delay 7 are 0.5234, 5.807, 11.09, 16.37,
21.66, 26.94, 32.22,..., and d(Red)/dz>0 at each pair of such (w,r), whereas
w==%0.6428 gives the critical values of 7 such as 2.816, 12.59, 22.37, 32.14,
41.91, 51.69, 61.46,..., and d(Red)/dr<0 at each pair of such (w,7) . The critical
values of 7 can be ranked as following

0.5234<2.816< 5.807<11.09 <12.59<16.37 ... (4.3.24)

Noting that 5.807 and 11.09 are two critical values of 7 corresponding to the
same frequency @ =1.1893, we conclude as done in Subsection 3.5.1 that the sys-
tem is Hurwitz stable when 7€[0, 0.5234) and (2.816, 5.807), but unstable for
7(0.5234, 2.816) and (5.807, +0). As a result, the number of stability switches
is 3.

4.3.2 Robust D-stability of One-parameter Family of Polynomials

As a direct application of Dixon's resultant elimination, the D-stability is dis-
cussed for a special one-parameter family of polynomials in this subsection. For
this purpose, let D be a simply connected domain given on the complex plane
with the boundary 6D governed by a polynomial equation b(x,y)=0. As men-
tioned in the introduction of this chapter, D should be taken as the open unit disk
on the complex plane in analyzing the Schur stability of discrete-time dynamic
systems. Thus, 8D is governed by b(x,y)=x2+y*~1=0. For the analysis of the
Hurwitz stability of continuous-time dynamic systems, D should be the open left
half-plane and b(x,y)=x=0. A family of polynomials is D-stable if and only if all
the roots of each member of the family stay in D.

Now consider the D-stability of a one-parameter family of polynomials gener-
ated by two polynomials p,(4) and p,(1) as following

P i)=(1- ) p (At ppa(A),  uel0, 1. (4.3.25)

Obviously, p,,(4,u) is analytic with respect to 4 and u . The root A(u) of
Pi(4,42) is continuous with respect to x and can not suddenly appear or disap-
pear, or change its multiplicity at a finite point on the complex plane. With an in-
crease of s, thus, the sum of multiplicity of all roots of p,,(4,) =0 in D¢, the
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complement of set D, can change only if a root appears on or crosses the bound-
ary 0D . Thus, we have the following theorem.

Theorem 4.3.2 The one-parameter family p,,(A4,4) defined in Eq. (4.3.25) is
D-stable if and only if the following two conditions hold true.

(a) At least either p,(4) or p,(A) has all characteristic roots in D.

(b) The inequality p,,(x+iy,)#0 holds for all x€[0, 1] and all (x,y)edD .

The Dixon’s resultant elimination enables one to check condition (b) without
any difficulty. We first consider a special case, i.e., the robust Hurwitz stability.
The marginal stability condition p, (iy,#) =0 indicates that the real and imaginary
parts satisfy R, (y,u)=0 and S,(y,u)=0. Thus, the resultant J,,(x) of polyno-
mials R,,(y,u) and S;,(y,u) in y is a polynomial with respect to & and must
be zero. That is,

J, ()= Resultant (R, ,S,,,y) =0. (4.3.26)

It is always feasible to find out numerically all the roots peA, [0, 1] of this
polynomial J,,(x) . The robust Hurwitz stability of p,(4,u) for ue0, 1] is
governed by the stability of p,(4) and p,(4) plus the polynomials p,(A,u)
corresponding to ueA;, < [0, 1], namely by the polynomial set

Ty,={p,(Ap) | 4=0, 1, peA,}. (4.3.27)

This means that the test of robust Hurwitz stability of family p,,(A1,u) can be
simplified to the test of robust Hurwitz stability of T}, .

Similar to the above simple case, we need to find out the testing set of polyno-
mials for the general case. Separate the real and imaginary parts of p,, (x+iy,u)
and denote them by R, (x,v,4), Si,(x,y,4), respectively. Then, condition (b) in
Theorem 4.3.3 holds if and only if the following set of polynomial equations

fl (x,y)ER12 (x,y,y)=0,
PS: 3 f5(x0)=8,(x,y,4)=0, (4.3.28)
f3(6,3)=b(x,y)=0

has no real common solutions. Thus, we get the testing set if the critical values of
parameter u€[0, 1] render p,,(A,4) marginal stable. Let J,(x) denote the cor-
responding Dixon’s resultant. Then, J,(x) is a polynomial of finite order with
respect to # and must be zero if PS has any common roots. If J,(#) is not al-
ways zero, then PS has common roots only when u reaches the roots of Ji, ()
fromyTheoremy4:3:2:nTheserootsycanybe numerically located and denoted as
A, [0, 1] . Otherwise, when J,, () equals identically to zero, it was proved in
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(Kapur et al. 1994) that there exists a non-zero condition J, 12(1) =0 for which PS
has common roots. Or directly, solving Eq. (4.3.3) for x and y with help of the
Gauss elimination and substituting them into the boundary condition b(x,y)=0
we can also obtain a polynomial J, 12(#) =0 and find out all, if any, real roots
ZIZC[O, 1] of J, 12(#) . With an increase of g from 0 to 1, therefore, the sum of
multiplicity of all roots of p,(4,4)=0 in the complement D of D can change
only if 4 reaches the zeros of J,,(u) or .712 () in [0, 1]. Let T}, be the union
set of p;(4), p,(4)and all the polynomials p,,(4,u) corresponding to € A,
or ,ue/~l12 , namely,

T ={p(4,1) | u=0,1, ueAy, or ueA,}. (4.3.29)

Then, it is obvious that the one-parameter family p,,(4,4) is D-stable if and only
if T;, is D-stable. Hence, the above analysis can be summarized as following.

Theorem 4.3.3 The one-parameter family p,,(4,4) of polynomials is D-stable
if and only if 7}, is D-stable.

The theorem indicates that 7;, serves as a testing set that governs the robust D-
stability of the whole family of polynomials p,,(4,u) for all u€[0, 1]. This is
important because the number of elements of 7, is finite.

We note that PS has no real common solution if and only if one of the follow-
ing cases occur: (a).J,,(x) or 712 (x2) has no real zeros in [0, 1]; or (b) at each
HeA, or ,ue/~112, Eq. (4.3.3) has no real solution; or (¢) Eq. (4.3.3) has a solu-
tion z, which gives a pair values of x = x,, y = y, but it is not compatible to the
powers in z = z,. Thus in practice, the stability test can be carried out easily by
computing the Dixon's resultant and solving some linear matrix equations.

In what follows, two simple examples are given to demonstrate the Dixon’s re-
sultant approach. Because the testing set for the robust Hurwitz stability can be
easily obtained by using the resultant in general sense, the following two examples
are all about the robust Schur stability.

Example 4.3.4 Consider first a simple polynomial p(1)=A*>+a,A+a, . It is
easy to verify that the roots of p(1) stay in D, the open unit circular disk on the
complex plane when a,=-21/20 and a@,=27/100 . Now, we study the robust
Schur stability of the family

27

21 21
Q={p(N=1*+a i+ ——x1.2<a, <-—x0.8
tp(4) 7100 T

20

= conv{A’ —éi/li 27 A 21/1+ 27 1,
50 100 25 100

(4.3.30)
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when q, is subject to a variation of + 20%. It is easy to find that the two vertex
polynomials are Schur stable. We require checking whether the polynomial family

63 21 27
2L oaat 4331
50 50" 100 (4.3.31)

J4P) (/luu)=/12 +(

has no roots on or outside D for all uef0, 1]. Straightforward computation gives
the Dixon's resultant of the real and imaginary parts R(x,y,u) and S(x,y,u) of
P (A,4) , as well as the boundary polynomial b(x,y)=x>+y—1, as following

J(p)= (42u+1)(42-253). (4.3.32)

Here J(u) is determined except for a non-zero constant factor. Obviously, J(u)
has no real root ue[0, 1]. As a result, all the characteristic roots of family
P (A1) stay in D . Thus, the polytope (2 is robust Schur stable.

Example 4.3.5 Consider now the following one-parameter family (2

Q={p(N)=2+aX’ +%l—% —2—(7)(1+r)3a£%(1—r)}
(4.333)
=conv{1’ —ﬂ(1+r),12 +l,1—i, A —ﬂa—rm2 +1/1—L}
60 5 60 60 S 60
with a variation of r=20%. It is also easy to know that the two vertex polynomi-

als are Schur stable. What follows is to check whether all the roots of family

47 47 1. 1
A=A + (e ) A2 = A——, 0,1 43.34
P (4,4) ( 20 150/1) 5450 uel0, 1] ( )

fallinto D .

Straightforward computation shows that the Dixon's reduced polynomial o ,
derived from R(x,y,u), S(x,y,u) and b(x,y)=x*+y*~1, has 11 terms, a com-
mon factor y exists apparently in some of the reduced polynomials, and two of
the reduced polynomials are apparently proportional to b(x, y). Hence, we need to
study the case when y=0 and x=x1. If there exists a ue€[0, 1] such that
R(1,0,)=0 and S(1,0,)=0, or R(-1,0,2)=0 and S(-1,0,)=0, then the poly-
tope is not robust Schur stable. It is easy to see that this is not the case. After
eliminating one apparent redundant polynomial and the common factor y , we can
write the set of Dixon's reduced polynomial equations in the form

A

Mz=0, z=[y* x*y* x> y* x* x y 1". (4.3.35)

Using the Gauss elimination, we transform M into the following form



140 4 Robust Stability of Linear Delay Systems

* L * ok * * k

0 E I S % * ®

0 0 %k 3k * * *

~ 00000 -10 24
M-S . (4.3.36)

00 000 0 0 -14677+9%u

0000O0 O O 0

0000O0 O O 0

0000O0 O O 0

00000 0 O 0 ]
Then, Eq. (4.3.35), together with Eq. (4.3.36), gives

—146774+94u=0, -x+24=0. 4.3.37)

The solution of Eq. (4.3.37) does not fall into the demanded intervals [0, 1]
and xe[-1, 1] . Thus, the set of Dixon's reduced polynomials derived from
R(x,y,1t), S(x,y,u) and b(x, y) has no common real roots at all. Therefore, the
inequality p;, (x+iy,)#0 holds true for all €0, 1]. As a result, the polytope
given in Eq. (4.3.33) is robust Schur stable.

4.4 Robust Stability of Systems with Uncertain Commen-
surate Time Delays

This section deals with the robust Hurwitz stability of a linear system with uncer-
tain commensurate time delays. It is actually the problem of robust Hurwitz stabil-
ity of a non-polytopic family of quasi-polynomials. Though the intensive studies
have been made on the robust stability of a polytope of quasi-polynomials, the test
of robust stability for a non-polytopic family of quasi-polynomials is still an open
problem. On the basis of the edge theorem, the section will present a necessary
and sufficient condition for the robust Hurwitz stability of the whole family. The
condition gives an effective procedure of graphic testing for the Hurwitz stability
of the family. One may not favor the graphic method at first, but enjoys its effec-
tiveness later, especially after understanding the difficulty in checking the robust
stability of quasi-polynomials. In fact, the graphic test has to be made even in the
case when the time delays are fixed.
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4.4.1 Problem Formulation

We assume that the time delays in the dynamic system of concern to be commen-
surate so that the characteristic equation of system is in the form of a quasi-
polynomial

m_ n-1

P+ ay (g™ 4 =0, (4.4.1)

k=0 j=0
where 7 is a positive, uncertain constant and yields
O<r<r<7, (4.4.2)

and the uncertain parametric vector ¢ falls into a given box of dimension(s) s
q€9={(q::9,-4,)19,59,<q,,1Si<s}cR”. (4.4.3)

The uncertainties mentioned above may come from the simplification in system
modeling, the measurement errors of system parameters and time delays, etc.

The quasi-polynomial in Eq. (4.4.1) under conditions (4.4.2) and (4.4.3) can be
written as a family of quasi-polynomials

m_n-1

O={ p(A) =A"+D > a, (@™ 17 | qeQ, r<r<7 ). (44.4)

k=0 j=0

In many applications, it is required that the system should be robust Hurwitz stable
under all possible parameter combinations. That is, the roots of any member in
family 77 should have negative real parts under all desired parameter combina-
tions.

The aim of this subsection is to present a new approach to testifying the robust
stability of the family /7 of quasi-polynomials. It is assumed hereinafter that the
coefficients a,(q) in Eq. (4.4.1) depend linearly on the uncertain parametric
vector ¢ . Of course, /7 is not polytopic provided that any uncertainty exists in
the common factor 7 of commensurate time delays, but it is truly a polytope for
any fixed z. Thus, the test of robust stability can be completed on the basis of
edge theorem. As a result, a sufficient and necessary condition for the robust
Hurwitz stability of the entire polytope of quasi-polynomials is derived. This con-
dition gives a very simple and effective graphic testing approach that determines
whether the family /7 of quasi-polynomials is robust Hurwitz stable or not.

Given a 7€[z, T, a polytope with parameter 7 is defined as
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m_ n-l

Q.= p(A) =X'+) Y a, (@™ 1 | qeQy, (4.4.5)

k=0 j=0

which is generated by the convex hull of a set of quasi-polynomials
p(4,7), p2(A4,7), .-+, p.(4,7) corresponding to the corner of parametric box Q,
namely,

Q2 _=conv{p, (1,7),p,(4,7),+ p, (A,7)} . (4.4.6)

Obviously, the family /7 in Eq. (4.4.5) can be written as
a={ i,

7<7<T}. (4.4.7)

The family 77 is robust Hurwitz stable if and only if £2, is robust Hurwitz stable
for any given r€[z, T]. Moreover, the edge theorem in (Fu et al. 1989) indicates
that the polytope (2, is robust Hurwitz stable if and only if all the edge quasi-
polynomials are robust Hurwitz stable.

Each edge, generated by the vertex polynomials p,;(4,r) and p;(4,r) of the
polytope (2,, corresponds to a two-parameter family of quasi-polynomials

py (At )=(-)p, (A1) +up; (A7), uel0, 1], zelz, 7]. (4.4.8)

Because p;(4,r) and p;(A4,7,u) are analytic with respect to 4, 7 and x4 as
well, any root A=4(r) of p;(4,r)=0, and A=A(r,u) of p;(A,7,1)=0 can not
suddenly appear or disappear, or change its multiplicity at a finite point on the
complex plane. With an increase of ¢ or ¢, therefore, the sum of the multiplicity
of roots of p;(4,r)=0 or p;(A,7,u)=0 on the right half-plane can change only if
a root appears on or crosses the imaginary axis. The above fact can be summarized
as the following theorem.

Theorem 4.4.1 The non-polytopic family /7 of quasi-polynomials is robust
Hurwitz stable if and only if the following two statements are true.

(a) At least either of the one-parameter families of vertex quasi-polynomials
pi(4,7) and p;(4,7r) is robust Hurwitz stable. That is, there exists a common
factor 7,€[z, 7] of commensurate time delays such that p,(4,7) (or p,;(4,7))is
Hurwitz stable, and p;(iw,7)#0 (or p;(iw,r)#0) is true for any r€[z, 7] and
020. '

(b) For each member of the two-parameter families of edge quasi-polynomials
p;i(4,7,4) defined in Eq. (4.4.8), the inequality p,(iw,7,4)#0 holds true for any
He[0, 1], 7€[z, 7] and ©=>0.
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As the inequalities p,(iw,7)#0 (or p,;(iw,7)#0) and p;(iw,r,1)#0 hold true
for sufficiently large @, the stability test of the parametric families of quasi-
polynomials can be checked within a finite range of @ .

Now, a number of criteria are available to testify the Hurwitz stability of a
given quasi-polynomial, see, for example, Theorem 2.2.7 and Theorem 2.2.11.
However, these criteria do not work for checking condition (a) or (b). Very tedi-
ous computation is usually involved in testing procedures when the current
methods are implemented. This subsection, thus, is devoted to developing the
simple condition that governs the robust Hurwitz stability of the whole family of
quasi-polynomials, as well as an effective method to complete the robust stability
test.

The marginal stability condition p(iw,7)=0 is a transcendental equation in two
unknowns @ and 7. If the characteristic function in Eq. (4.4.1) is in the form
p(A,0)=P(A)+Q(A)e* with degP>degQ, the equation p(iw,r)=0 gives two
linear equations with respect to coswr and sinwr . Solving p(iw,r)=0 for
coswr and sinwt , and substituting the solutions into cos?@r+sin’wr—-1=0, we
have a polynomial equation independent of 7. Thus, we can numerically deter-
mine the critical values of @ , and then figure out the corresponding critical values
of 7.

In order to solve the equation p(iw,r)=0 in a more complicated form for @
and 7, it is necessary to solve two polynomial equations simultaneously for un-
knowns cos@wr and sinwr , rather than two linear equations, because we can ex-
pand cos(kwr) and sin(kwr) to the polynomials with respect to coswzr and
sinwt . This problem has no closed-form solutions, whereas pure numerical pro-
cedures usually involve an infinite number of computational steps. It is natural,
thus, to develop a computationally traceable procedure for calculating the maxi-
mal delay factor. For this purpose, the Dixon's resultant elimination is helpful.

4.4.2 Stability of Vertex Quasi-polynomials

To check whether the inequality p,(iw,r)#0, k=i, j holds true or not for any
re[z, 7] and @>0, we consider a set of polynomial equations in two unknowns
x=coswt and y=sinwr as following

H(x)=R, (x,y,0)=0,
PSk : f2 (x’y)ESk (x,y,a))=0, (449)
LGEPER +y* -1=0,
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where R,(x,y,@)= Re[p,(iw,7)] and S, (x,y,w)= Im[p,(iw,7)], whereas @ is
taken as a parameter. The real and imaginary parts R,(x,y,®) and S,(x,y,w) are
two polynomials in x, y and @ since we can expand cos(kwr) and sin(kwrt) to
the polynomials with respect to coswz and sinwz . Obviously, p(i®,7)=0 has a
real root (w",z")€[0, +o0)x[z, 7] if and only if PS, has a real common root
(cos@’t", sinw’t”, ") . ,

Let J, (@) denote the Dixon's resultant of PS, . Then, J,(®) is a polynomial
with respect to @ . As stated in Theorem 4.3.2, J, (@) must be zero if PS, has a
real common root. That is, @" must be a positive root of J, (@) . Though J, (@)
may keep being zero for all >0, we can always find a solution in the form of
x=coswr=x"(w) and y=sinwr=y°(w) of PS, by using Dixon's resultant elimi-
nation in Subsection 4.3.2 if the solution of corresponding Dixon's reduced linear
equation is compatible to PS, . Substituting them into x>+y>-1=0 gives a poly-
nomial J,(@). Then, @  must be the positive roots of J, (@) . By using the fol-
lowing two sets corresponding to PS,

I,={w20 ‘ J (@)=0 or J,(0)=0}, (4.4.102)

T, ={r€lz, 7] ‘ coswr=x"(w), sinor=y" (), wel,}, (4.4.10b)

we are in the position to summarize the following theorem.

Theorem 4.4.2 The one-parameter family p,(A4,7) is robust Hurwitz stable for
any e[z, 7] if and only if the following two statements are true.

(a) p,(4,r) is Hurwitz stable;

(b) One of the following three conditions holds. (i) 7, is null. (ii) 7} is not
null, but the solution of Dixon's reduced linear equation is not compatible to PS, .
(iii) 7} is null.

Now, we can easily derive a polynomial R} (@)(<R,(x,y,®)) with positive
leading coefficient or R} (w)(>R,(x,y,®)) with negative leading coefficient by
replacing coswr and sinwr in R, (x,y,®) with 1 or —1. Thus, it is possible to
solve the polynomial R} (@) numerically for the maximal real root w, . If w>a,,
either R,(x,y,@)=R}(0)>0 or R,(x,y,0)<R;(w)<0 holds. In order that the
condition p,(iw,r)20 holds for (w,7)€[0, +)x[z, 7], it is necessary to check
the conditions in Theorem 4.4.2 on the region [0, @, ]x[z, T].

On the basis of Theorem 4.4.2, the robust stability analysis of vertex quasi-
polynomials can be completed with help of the computer algebra platforms such
as MAPLE and MATLAB. In practice, the MAPLE command "implicitplot" or
better "algcurves[plot_real curve]", or MATLAB command "ezplot" provides an
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effective graphical tool to testify if p,(iw,r)#0 is true on [0, w,]x[z, T].
Graphically, we need to check whether the graphs of coswr=x°(w) and
sinmr=y"(w) intersect with each other on [0, @,]x[z, T], or even more directly
to check whether the graphs of Re[p,(iw,7)]=0 and Im[p,(iw,r)]=0 intersect
with each other on [0, w,]x[z, T].

4.4.3 Stability of Edge Quasi-polynomials

Now, we check whether the inequality p;(iw,r,1)#0 holds true for any u€l0, 1],
re[z, 7] and w20 according to Theorem 4.4.1. This task is equivalent to check
whether the following polynomial equation

z* p;(io,7)+p ,(iw,7)=0 (4.4.11)

has no real root z for any re[z, 7] and @>0, where z?=(1-pu)/u takes all the
non-negative values with an increase of g in [0, 1].
Let

R (w,7)=Re[p,(iw,7)], S{w,0)=Im|p,(iw,7)], i=1,2,--,r. (4.4.12)
Then, we write Eq. (4.1.11) as
[2’R,(0,0)+R (0,0)]” +[2°S,(@,7)+S , (0,0)]* =0, (4.4.13)
namely,
az* +bz* +¢=0, (4.4.14)
where
a=a(w,r)=R} (0,0)+S} (@,r)>0,

b=b(w,r)=2[R, (&,7)R (@,7)+S, (@,7)S ; (w,7)], (4.4.15)
c=c(w,7)=R} (0,7)+S} (0,7)20.

From the elementary algebra, the following statement is obviously true.

Lemma 4.4.1 For a>0, az*+bz*+c=0 has no real roots if and only if either of
the following two conditions holds

(a) 520, ¢>0;

(b) <0 and b*-4ac<0.

The Hurwitz stability of p;(4,r) and p,(4,r) implies that a>0 and ¢>0.
‘This.factytogetherwith-Jbemma4:4-1l5leads to the following theorem.
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Theorem 4.4.3 Assume that the vertex quasi-polynomials p;(4,r) and
p;(A,r) are robust Hurwitz stable for any re[z, 7]. Then the two-parameter
family p;(4,7,4) is robust Hurwitz stable for r€[z, 7] and ue[0, 1] if and only
if either of the following conditions holds true for any r€[z, 7] and w=0.

(a) b20.

(b) <0 and b*>—4ac<0.

According to the definition of b=b(w,7) in Eq. (4.4.15), the coefficient b is a
polynomial with respect to @, coswz and sinwr . The leading coefficient with
respect to @ is positive and independent of coswr and sinwr . It is easy to get a
polynomial b,(@)(£b(w,r)) with positive leading coefficient by replacing coswr
and sinwr in b(w,r) with 1 or —1. Thus, it is possible to find out the maximal
root w, for polynomial b,(®) numerically. If w>®,, then b=b(@,7)=by(@)>0 .
Thus, we only need to check the conditions of Theorem 4.4.3 on the rectangle
[0, @,]x[z, T]. From Theorem 4.4.3, the following theorem is obviously true.

Theorem 4.4.4 Assume that the vertex quasi-polynomials p;(4,7r) and
p;(A,r) are robust Hurwitz stable for any z€[z, 7]. If

: 2
[o,ar,?]iﬁ,ab(w’r) >0 or [o,g:;%é,a(b —4ac) <0, (4.4.16)
the two-parameter family p;(A,7,u) is robust Hurwitz stable for any re€[z, 7]
and u€[0,1].
Suppose that b(d,7)= ming ,, 1.7 6(®,7) , then we have

%b(m,r)| =0 and %b(a),r) =0, (4.4.17)
where 0b/Ow and O0b/0t are the polynomials with respect to @, coswz and
sinwr . Using the Dixon's resultant elimination here again, we can find out the
extreme points (4,7) and the corresponding extreme values. It is easy to complete
the same work for 5% —4ac .

Once the extreme point of b(w,7) or b*>—4ac is in hand, we need to check the
conditions in Theorem 4.4.3 only on the sub-regions near the extreme points rather
than the whole rectangle [0, w,]x[z, T]. This may greatly reduce the unnecessary
computation.

In practice, the robust stability test for the edge quasi-polynomials can be
graphically completed as follows.

Algorithm 4.4.1

(a) Compute the coefficients a(@,7), b(w,r), c(w,r) and the polynomial
by(@) with maximal root @, .
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(b) Plot the graphs of b(w,r) =0 and b*(w,r)—4a(w,r)c(w,r)=0 on the rectan-
gle [0, w,]x[z, T]. These two graphs usually divide [0, w,]x[z, T] into several
sub-regions.

(c) Check the stability. If there exist any sub-regions where conditions 5<0
and b*-4ac>0 are true, then the edge family is not robust Hurwitz stable there.
Otherwise, the edge family is robust Hurwitz stable.

4.4.4 A sufficient and Necessary Condition

In summary, the main result of this section can be stated as a sufficient and ne-
cessary condition that governs the robust Hurwitz stability of the entire family.

Theorem 4.4.5 The family /7 of quasi-polynomials is robust Hurwitz stable if
and only if the following two conditions hold true.

(a) For each vertex quasi-polynomial family p,(A4,7), (i) the quasi-polynomial
P« (A,7) is Hurwitz stable and 7, is null; or (ii) 7 is not null, but the solution of
Dixon's reduced linear equation from PS, is not compatible to PS, ; or (iii) 7} is
null.

(b) For each edge generated by p;(4,r) and p,(4,r), the condition 520 or
the condition 5<0 and 5?—4ac<0 holds true on the rectangle [0, @,]x[z, 7].

The test of robust Hurwitz stability on the basis of Theorem 4.4.5 requires testi-
fying the Hurwitz stability of some fixed quasi-polynomials, some one-parameter
quasi-polynomials and two-parameter quasi-polynomials only. Here, the stability
test of any family of quasi-polynomials can be made by means of the Dixon's re-
sultant elimination for polynomial equations. In addition, the condition of Theo-
rem 4.4.5 gives a combined analytical and numerical procedure, which can be
completed effectively by combining the Nyquist diagrams and the parametric
plots. As a result, the robust Hurwitz stability for the non-polytopic family /7 can
be completed if the analytical procedures and numerical routines, or the Nyquist
diagrams and the parametric plots, are implemented together.

4.4.5 An lllustrative Example

To demonstrate the proposed approach, the robust Hurwitz stability of a single-
degree-of-freedom system with two commensurate time delays in the state feed-
back is considered. The motion of the system is governed by

XH0.05% +x=ux(1=27)+0.5%(t—7) , (4.4.18)
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or alternatively by the characteristic equation
Pp(A,u,7)=2> +0.051+1—ue " ~0.51e* =0 (4.4.19)
The robust Hurwitz stability is checked for a family /7 of quasi-polynomials
I={p(A,u,r) | ue[0.375, 0.625], 7€[0.675, 1.125]}. (4.4.20)
The straightforward computation based on the proposed approach shows that

the zero solution of the non-polytopic family is robust Hurwitz stable. For the sake
of brevity, we only look at the graphic results, instead of the analytic and numeric

procedures of test.
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Fig. 4.4.1. The Nyquist diagram of p(ia>,0.5,0.9)/(ia)+1)2
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Fig. 4.4.2. Real and imaginary parts; a. p(i®,0.375,7) =0, b. p(i®,0.625,7) =0
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Fig. 4.4.3. The graph of b(w,7)=0

Figure 4.4.1 shows that the quasi-polynomial p(4,0.5,0.9) is Hurwitz stable
since the Nyquist diagram does not contain the origin of the complex plane. Figure
4.4.2 indicates that the real and imaginary parts do not reach zero simultaneously
on the rectangle [0, wy]x[r, 7], and then the two vertex quasi-polynomials
p(4,0.375,r) and p(A,0.625,7) satisfy the inequalities p(i®,0.375,7)20 and
p(i@,0.625,7)20 respectively on the rectangle [0, w,]x[z, T]. Thus,
p(4,0.375,r) and p(4,0.625,7) are Hurwitz stable for any re[0.675, 1.125]. In
Fig. 443, the graph of b(w,r)=0 divides the corresponding rectangle
[0, wy1x[z, T] into two parts by, while b*—4ac is negative and does not appear
in Fig. 4.4.3. Therefore, Eq. (4.4.14) corresponding to Eq. (4.4.20) has no real root
z . Asaresult, /7 is robust Hurwitz stable.



5 Effects of a Short Time Delay on System Dynamics

In many controlled mechanical systems, the unavoidable time delays are much
shorter than the shortest period of system vibration. If this is the case, the control-
lers are usually designed according to well-developed control strategies, say opti-
mal control, neglecting the time delays in the controllers and actuators. After the
design, one may wonder whether the controlled system is still asymptotically sta-
ble if any short time delays appear in the feedback, whether the system stability is
robust with respect to the small variation of feedback gains, and so forth. These
questions have been answered in part in previous chapters when the system is of
single degree of freedom. Nevertheless, tremendous computational efforts have to
be made when the system dimension increases. To reduce the computational cost,
hence, approximate approaches are preferable in practice.

This chapter presents several approximate approaches to estimating the stability
and the robust stability of linear systems with a short feedback time delay, respec-
tively. Then, it discuss the validity of the Taylor expansion of delay terms through
the examples of both linear and nonlinear oscillators when they are equipped with
the feedback involving a short time delay.

5.1 Stability Estimation of High Dimensional Systems

Consider a linear, time-invariant system of » degrees of freedom under the state
feedback control with a bounded time delay 0<r<p . The motion of the system
yields

ME(E)+Cx(t)+ Kx(t)= f () + Ux(t—1)+Vi(t~1) (5.1.1)

where xeR" is the vector of displacement, MeR™", CeR™", KeR™ are the
matrices of mass, damping and stiffness in the usual sense, UeR™" and VeR"™"
are the feedback gain matrices for the displacement and the velocity paths, re-
spectively. In general, these matrices, especially those of feedback gains, are not
necessarily symmetric. In contrast to the Hamiltonian description, i.e., the state
description, of controlled systems in' most publications, the Lagrangian description
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here will enable one to simplify computation and to gain an insight into the system
dynamics as well.

Let C" denote the complex space of n dimensions. Substituting the candidate
solution x(#)=ae” , where AeC' and aeC", into Eq. (5.1.1) yields a transcen-
dental eigenvalue problem

D(4,7)a=0, (5.1.2)

with
DA, 1) =M+ AC+K—e * (U+AV)eC™ . (5.1.3)
The system is asymptotically stable if and only if all the eigenvalues of Eq. (5.1.2)

have negative real parts.
Meanwhile, we have the adjoint eigenvalue problem of Eq. (5.1.2)

b*'D(A,7)=b"D(1,7)=0, beC", (5.1.4)

Hereinafter, the asterisk always represents the transpose and conjugate operator.
Even though Eq. (5.1.4) does not offer any new information on the system dy-
namics, it will be helpful to simplify the algebraic manipulation later.

5.1.1 Distribution of Eigenvalues Subject to a Short Time Delay
The characteristic function corresponding to Eq. (5.1.2) reads
D(A,7)=det D(A,7)=det[ P M +IC+K - (U+AV)]. (5.1.5)

A controlled system is usually designed to be stable when the time delay in the
state feedback vanishes. Henceforth, we assume that all the 2»n roots of D(A4,0)
have negative real parts throughout this section.

Im(})
By
3 ¢
i * Re())
FL BL BR ER 0 BZ
-B /
7))

Fig. 5.1.1 Existence region of the roots of D(A,r) on the complex plane
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As shown in Fig. 5.1.1, let B, <0 and B,<0 be the smallest real part and the
largest real part of these roots respectively, and B,>0 be the bound of all imagi-
nary parts of the roots in absolute value. Moreover, two bounds are defined for
later use

B,=B,-£<0, By=B,+&<0, (5.1.6)

where ¢ is a small positive number, that ensures the above inequalities. In what
follows, we study the effect of a short time delay on the number and the distribu-
tion of the roots of Eq. (5.1.5) on the complex plane spanned. We shall show that
Eq. (5.1.5) has only 2#n roots near those of D(A4,0) if the time delay is short
enough.

We first exclude the roots of Eq. (5.1.5) from the shaded region in Fig. 5.1.1.
Equation (5.1.5) can be written as

D(A,0)=py(A"+p, A" +-+p,)=0, p,#0. (5.1.7)

where p;,j=0,1...,2n are the polynomials in terms of the entries of matrices M,
C, K, Uand V, as well as e™* . It is easy to see that on the right half-plane
Re(A)> B, , the following inequality holds

-Ar

:e—Re(i)r<e—§LP for 0<r<p. (5.1.8)

e

Thus, p;,j=0,1,.,2n are bounded in absolute value. This fact enables one to de-
fine two bounds

B‘EImaszJI for Re(l)>§L, 0<r<p, (5.1.9)
<j<2n!
B,=max{l, B,, (2n+1)B,}. (5.1.10)

There follows the inequality

DDl pol {27+ 27 4 o 2ol 2"(1—%' ----- ||;’ o)
(5.1.11)
2n _% 20 2n
2ApolBa" (A== B2 (1= 70>0.

This inequality implies that none of the roots of Eq. (5.1.5) exists in the shaded re-
gion in Fig. 5.1.1 if 0<z<p.

Next, we analyze the possibility of the roots of D(A,r) falling into the right
closedyrectangle s Sy={AdBrsRe(A)<Bs; Im(1)<B,}. For this purpose, rewrite
D(A,7) in S; as
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D(A,7)=D(1,0)+Q(4,7), with Q(1,0)=0. (5.1.12)
It is obvious that no root of D(A4,0) exists in the closed rectangle Sy, thereby

B, -=-rlnisn|D(/1,0)|>0 ) (5.1.13)

From the continuity of D(A,7r) with respect to z, there exists a small, positive
number J,=5(¢)<p such that

r?%x|Q(z,r)|<B3, 0<7<8, . (5.1.14)

Consequently, we have

|D(/1,r)|>|D(l,0)|—|Q(ﬂ,,r)|>B3—IPE%X|Q(/1,I)I>0, 0<7<8,, (5.1.15)

which excludes the roots of D(A,7) from the closed rectangle S, .

Finally, we study the number of roots of D(4,7) in the left closed rectangular
region S;={4 | B,<Re(4)<B;, Im(1)<B,} , where D(4,7) can be written as Eq.
(5.1.12) again. The definitions of bounds B,, B; and B, ensure that there is no
root of D(A,0) on the boundary I” of the closed region S, , namely

B, Er?eip|p(,1,0)|>o ) (5.1.16)

Also from the continuity of D(A,7) with respect to 7 , there exists a small, posi-
tive number &8, =6(¢)<p such that

r?a;<|Q(/1,r)|<B4, 0<7<5, . (5.1.17)

According to the Rouche's theorem in complex analysis, the number of roots of
D(A,7) in the closed rectangle S, is the same as that of D(4,0) in §, provided
that 0<7<d, . The above analysis can be summarized as a useful theorem.

Theorem 5.1.1 Given £>0, there exists a bound J(&)=min(8,(&),0,(¢)) for
the time delay 7 such that D(A,7) continues to have 2# roots in the closed rec-
tangle S, if 0<z<d(¢) . However, the region of distribution of these roots on the
complex plane may become slightly larger.

Without loss of generality, we can assume that the roots with the largest real
part are a pair of complex roots of D(4,0) and distinct from the other roots of
D(A,0). Let B, be greater than the second largest real part of the roots, we can
similarly prove that D(4,7) has a pair of complex roots only in the narrow strip
S, when 0<z<d&(¢). In this case, the real part of this pair of complex roots is
bounded within [B,,B.]. We can therefore estimate the stability of the system
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with delayed feedback simply from the variation of a single pair of roots of
D(A,0), provided that the time delay is sufficiently short. This pair of roots will
be referred to as “the most dangerous eigenvalues” hereafter for simplicity.

5.1.2 Estimation of Eigenvalues

Should there exist no time delay in the state feedback, Egs. (5.1.2) and (5.1.4)
would become a pair of adjoint, quadratic eigenvalue problems, the solutions of
which yield

{D(ﬂ, 0)a, =[A;M+4,(C~V)+(K~U)la, =0, (5.1.18)

b'D(A 0)=b"[AZM+A (C—V)+(K-U)]=0, r=12,.,2n,

where A,eC' and A,,,=4,eC', r=1,2,..,n are n pairs of conjugate complex ei-
=b,eC", r=1,2,...n are the

corresponding eigenvectors. Specifically, all the eigenvectors are scaled to

genvalues, a,€C", a,,,=a,eC", b,eC" and b

r+n

a‘a,=b'b =1, r=12..2n. (5.1.19)

When the feedback control involves a short time delay, there exists an eigen-
value 4, near the eigenvalue A, . Similarly there is a corresponding eigenvector
@, near a, . In this subsection, we study how to determine 4, and @, for a speci-
fic time delay 7 when A, and a, are given, whereas

A=A, +AA, @ =a,+Aa, @'a =l (5.1.20)

(1) Approach based on truncated perturbation of an eigenvalue

Substituting the first two equations in Eq. (5.1.20) into Eq. (5.1.2) and dropping
the higher order terms of AA4,, A4,Aa, and so on., we have

D(A,,r)(a,+Aa,)-A4 E(A, ,r)a, =0, (5.1.21)

where
E(4, ,T)E—%D(LT)M% =—{22,M+C+e""[(U+/1rV)r—V] 1eC™ (5.1.22)

To solve Eq. (5.1.21) for A4, and Aa,, we construct a set of linear equations in
the unknown complex vector p,

D(A,,7)p,=E(A,,7)a,. (5.1.23)
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Because A, is not the eigenvalue of Eq. (5.1.2) when 7>0, the matrix D(4,,7) in
Eq. (5.1.23) is invertible. Besides, E(4,,r)a, must be a non-zero vector. Other-
wise Eq. (5.1.21) implies that A, is the eigenvalue of Eq. (5.1.2). The solution of
Eq. (5.1.23) thus is a unique non-zero vector p, . Comparing Eq. (5.1.23) with Eq.
(5.1.21) yields

a. =a +Aa,=AAp,, (5.1.24)

Namely, p, is an eigenvector associated with the eigenvalue /T, of Eq. (5.1.2).
Following the idea of the Rayleigh quotient, we have

a E(1.,7)a,
pDG.Op, M GEGLOM ) o)
PrE(ﬂ’r ’T)pr ar E(ﬂ’r 72.)(ar+Aar) ar E(ﬂr’r)a'
AL AL,
There follows an explicit expression for A4,
* * 2 -A,T
P04 0p, _ PIAMAACTK—e (U2 Ip, (5 9

" PIE(,.0)p, p2AM+C+e M [(U+AV)T-V1ip,

Substituting Egs. (5.1.26) and (5.1.24) into Eq. (5.1.21), we have the new eigen-
value and the eigenvector.

(2) Simplified approach based on truncation of a very short time delay

If the time delay 7 is so short that the delay phase |1,7|<<l, we can write the
matrices D(4,,7)and E(/A,,r) as a truncated Taylor expansion at A, with respect
to 4,7 and then have

D(A, 0)~D(A,,0)+ A, z(U+AV), 5127
E(A,,0)~E(4,,0)=—(24, M +C-V). o
Substituting Eq. (5.1.27) into Eq. (5.1.21) yields
D(A,,0)Aa,+ A, t(U+AV)a,~AA E(2,,0)a,=0. (5.1.28)

Premultiplying Eq. (5.1.28) by the left eigenvector b, associated with eigenvalue
A, , we have

Ab"(U+AV)a,~AAb E(A, 0)a,=0. (5.1.29)

As proved in Subsection 5.1.4, a, and b, satisty
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b E(4,,0)a,=—b (24, M+C—V)a, =0 . (5.1.30)

Therefore, the simplified explicit expression for A4, reads

1r=’1fb: U+AV)a, - *l,b, U+AV)a, . (5.1.31)
b E(A,,0)a, b2AM+C-V)a,
It is easy to verify that Eq. (5.1.31) is identical to the result obtained by the first
order perturbation with respect to the small parameter 7 .
From Eq. (5.1.31), the sensitivity of the eigenvalue module with respect to the

time delay can be defined as

y(z,)zwr =| b (U+AV)a, |‘ (5.1.32)
Azl |bRAM+C—-V)a,
Then, the following two limits hold true
b Ua, . bVa,
lim y(4, )=f———, lim u(4,)=——. 5.1.33
fimuir e im ) ‘ e (5.1.33)

It is worth noting that the sensitivity is independent of the system stiffness matrix
K . Keeping these relations in mind, we can estimate the relative change of the ei-
genvalues owing to a very short time delay.

(3) Discussions

Presented above are two forms of the new approach for estimating an eigenvalue
of the system with delayed feedback. The difference between these forms is the
truncation of higher order terms, which consequently effect accuracy and compu-
tational effort. If the time delay is so short that |4,7]<<1 holds, Eq. (5.1.31)
provides an accurate and efficient estimate. If this inequality does not hold, yet
A4 |/|A| is still a small quantity, the eigenvalue can be estimated from Eq.
(5.1.26), where the eigenvector p, has to be determined from a set of n-
dimensional, complex, linear equations in advance.

Even though A, is denoted as the eigenvalue of the delay-free system, none of
the eigenvalue properties of the delay-free system are used during the analysis.
Thus, 4, can be taken as an initial estimate of the eigenvalue of the delay system
and repeatedly use Eq. (5.1.26) as a Newton-Raphson iteration if |A A.|/|4.| is not
small. If the time delay z is considered as a parameter, Eq. (5.1.26) can repeat-
edly be used as a continuation technique to trace the variation of an eigenvalue
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with increase in time delay 7 . This is the third form of the present approach to the
case of long time delay and will be demonstrated in the next subsection.

In addition, it is interesting to apply these estimates to an underdamped, single-
degree-of-freedom system with delayed feedback. Now Eq. (5.1.26) reads

D(A,7)  Am+Ac+k—e " (u+Av)]
E(A4,7) 2Am+cte " [(u+Av)r—v]’

Al = (5.1.34)

where m, ¢, k, u and v are the scalar parameters corresponding to the matrices in
Eq. (5.1.1), and

_v—c . J4m(k—u)—(c—v)2

A 5.1.35
' 2m 2m ( )
Similarly, Eq. (5.1.31) in this case becomes
2
1=D(/11,r): Au+Av ; (5.1.36)
E(A,r)  2Am+c—v
Substituting Eq. (5.1.34) into Eq. (5.1.35) yields
2 p—
Re(Ad,)=—H3V ~V, (5.1.37)

m2
It is worthy to note again that the variation of the real part of the eigenvalue is

independent of the system stiffness.

5.1.3 lllustrative Examples

(1) A 2-DOF system with delayed state feedback

% |—>.I‘1 r—>x2

ST 5T

klzk k2=1.0 f(t)

JVW\I_ m=1.0 JWW\_ My=1.01 o

C1=0.1 C2=0.1

[ONO) ) )

7
Fig. 5.1.2. A dual-mass system under the state feedback with equal time delays
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To demonstrate the merits of the above approaches, consider the stability of the
steady-state motion of a dual-mass system with a delayed feedback as shown in
Fig. 5.1.2. The motion of the system yields Eq. (5.1.1), where

{1 o} { 0.2 —0.1} {kﬂ —1}
M= , C= , K= , (5.1.38)
0 1 -0.1 0.1 -1 1
whereas the stiffness coefficient k£ and the feedback gain matrices U and V' will
be variously specified in different case studies. As a base comparison, the eigen-
values for a given time delay z in each case were first determined from the inter-
sections of the curves Re[D(A,r)]=0 and Im[D(4,7)]=0 plotted numerically on
the complex plane of 4 by using MAPLE. These eigenvalues are taken as the ex-
act numerical results in what follows. For the sake of simplicity, the terms ST, DT
and NR will be used hereafter for the approach based on Single Truncation of ei-
genvalues, the approach based on Double Truncations of both eigenvalues and the
time delay, and the Newton-Raphson iteration on the basis of ST, respectively.
Also, 7, will be used to denote the shortest time delay when the »-th order mode
of the delay-free system goes unstable, and referred to as the r-th critical time de-
lay for short.

Case 1 As the first and the simplest case, a state feedback was introduced to the
system from the right mass to the connection only, so that

00 1.0 0.0 0.1
k=20, U= , V= . (5.1.39)
0.0 -1.0 0.0 —-0.1

The variation of the real and imaginary parts of two eigenvalues with an increase
of time delay 7 is shown in Fig. 5.1.3, where the real parts of two pairs of conju-
gate eigenvalues vanished when the time delay arrived at the critical values
7,20.396 and 7,~0.418, respectively. The results of NR in Fig. 5.1.3 were iden-
tical to the exact results represented by circles. Both ST and DT gave good esti-
mates of 7,. The relative errors were -0.1% and 1.5% for the first pair of conju-
gate eigenvalues, and 3.1% and -0.96% for the second, respectively. As DT
provides a linear relationship between an eigenvalue and the time delay, the esti-
mation error, especially that of the second pair of conjugate eigenvalues, became
unacceptable when the time delay was longer.

Shown in Fig. 5.1.4 are the curves of Re[D(A,7)]=0 and Im[D(4,7)]=0 on the
upper half-plane for two specific time delays 7=0.1 and 7=2.5, corresponding to
a stable status and an unstable status of the system, respectively. Each intersection
point of these curves indicates an eigenvalue of Eq. (5.1.2) on the complex plane.
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The new eigenvalues emerged in the figure only when the time delay was long
enough. It is this fact that makes it possible to analyze the system stability ac-

cording to the evolution of eigenvalues of the delay-free system.

0.1 0.2 .
a, b.
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-0.1}
-0.1 . . . . .02 . . . .
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0.76} A coo,] 18]
ImA I
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Fig. 5.1.3. Variation of the eigenvalues with an increase of time delay in Case 1; a. The

T

T

first eigenvalue, b. The second eigenvalue; Key: —o— NR, — ST,---DT

Re[D(4,7)]=0
..... Im[D(4,7)]=0

Re[D(4,7)]=0
Im[D(A, 7)]=0

Fig. 5.1.4. Distribution of eigenvalues of Eq. (5.1.3) in Case 1; a. 7=0.1, b. 7=2.5

Case 2 The type of feedback was kept the same as that in Case 1 and only the
velocity feedback gains were increased from +0.1 in Case 1 to £1.0 here. That is,
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00 1.0 00 1.0
k=2.0, U= , V= . (5.1.40)
00 -1.0 00 -1.0

The negative velocity feedback reduced the real part of the eigenvalues of the de-
lay-free system, and hence increased the critical time delays. Intuitively speaking,
it would appear more difficult to estimate eigenvalues in this case. In Fig. 5.1.5 are
shown the variations of the real and imaginary parts of the two pairs of conjugate
eigenvalues with increase in time delay, which reached the critical values respec-
tively at 7;=1.135 and 7,=0.644 , much longer than those in Case 1. Here again
the results of NR were the same as the exact results. As shown in Fig. 5.1.5, both
ST and DT offered good estimations of the critical time delay 7, with relative er-
rors of —1.76% and 0.44%, respectively. For the estimation of the second critical
time delay 7,, ST gave an under-estimation 7,=0.51. However, DT totally failed
because of the non-monotonic trend of ReA, with an increase of the time delay.
In this case, NR is the more appealing approach even though it required a few it-
erations. It is important to note that even though 4, was the "most dangerous ei-
genvalue" when the system did not involve time delay, Red, became positive
earlier than ReA, when the time delay increased. Hence, the "most dangerous ei-
genvalue” can change for a sufficiently long time delay.

0.10 1.0

0.05¢ 0.5}

Red 0.00 0.0 [T

-0.05} -0.5 j

-0.10 A . L -1.0 . . .
0.0 0.5 1.0 1.5 20 00 0.5 1.0 1.5 2.0

0.9

Imi 08|

0.7 L L 1 1.0 L L L

Fig. 5.1.5. Variation of the eigenvalues with an increase of time delay in Case 2; a. The
first eigenvalue, b. The second eigenvalue; Key: —o— NR, — ST, ---DT
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Case 3 To test the efficacy of the approach, the system was intentionally des-
igned to be more complicated by introducing a stronger displacement feedback
from both masses, namely

20 3.0 0.0 1.0
k=20, U= , V= . (5.1.41)
00 -3.0 0.0 -1.0

As shown in Fig. 5.1.6, the real parts of the first and the second eigenvalues van-
ished at 7,=0.139 and 7,=0.298, respectively. Both ST and DT again gave good
estimations for the critical time delay 7, with relative errors of -0.07% and 0.94%,
respectively. For more difficult estimation of the second critical time delay 7, , the
relative errors of ST and DT were -6.7% and 76%, respectively.

0.5 1.0
b.
0.5}
Rei 0.0 0.0
0.5
0.5 - . -1.0
00 02 04 06 08 10 00 02 04 06 08 1.0
2.0 3.5 .
a b.
3.0}
mi 15 e 250 =
2.0
1.0 . ) . L 1.5 . A A .
00 02 04 06 08 10 00 02 04 06 08 1.0
T T

Fig. 5.1.6. Variation of the eigenvalues with an increase of time delay in Case 3; a. The
first eigenvalue, b. The second eigenvalue; Key: —— NR, — ST,---DT

Case 4 Compared with Case 3, the system was rendered even more complicat-
ed by adding the velocity feedback from the left mass to itself, i.e.,

-20 3.0 -1.0 1.0
k=20, U= , V= . (5.1.42)
00 -3.0 00 -1.0
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As shown in Fig. 5.1.7, even though DT failed to estimate accurately the critical
time delays for either eigenvalue in this case, both NR and ST worked success-
fully. For the two critical time delays 7,=0.383 and 7,=0.365, the relative errors
of ST were respectively 9.1% and 13.8%. Here again the real part of the "nomi-
nally less dangerous" eigenvalue A, of the delay-free system became positive a
little bit earlier than that of the "most dangerous” one when the time delay in-

creased.
0.5
Rel 0.0
-0.5
0.
2.0 — 4.0 —
a b.
1 8 /z 3.5 /,f
3.0}
1.6} <
ImA 5 2.5¢
141
2.0t
1.2- 1.5_
1.0 L . . . 1.0 . . . .
00 02 04 06 08 10 00 02 04 06 08 1.0
T T

Fig. 5.1.7. Variation of the eigenvalues with an increase of time delay in Case 4; a. The
first eigenvalue, b. The second eigenvalue; Key: —o— NR, — ST,---DT

Case 5 In the final case, the right spring in the system was replaced with an ex-
tremely stiff one, while the state feedback was kept the same as that in Case 3,

namely
-2.0 3.0 00 1.0
k=399.0, U= , V= . (5.1.43)
0.0 -3.0 0.0 -1.0

Figure 5.1.8 shows that the first mode of the system became unstable when the
time delay reached 7,=0.316, whereas the second mode remained stable no matter
how.long the time.delay.became. Not surprisingly, ST predicted the oscillation of
the second eigenvalue with respect to the time delay as accurately as NR did, but
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DT gave a totally wrong prediction. This example demonstrates again the premise
that ST and DT work well only within the ranges |A4,/4,|<<1 and |4z]<<l, re-
spectively.

-1.0 . : } . -1.0 . )
. 0.

3.0 20.5

Imi 2.0L 20.0T

00 02 04 06 08 1.0 00 02 04 06 08 1.0

T T

Fig. 5.1.8. Variation of the eigenvalues with an increase of time delay in Case 5; a. The
first eigenvalue, b. The second eigenvalue; Key: —o— NR, — ST, ---DT

(2) A 10-DOF system with delayed velocity feedback

In order to demonstrate the applicability of the new approach to the stability esti-
mation of high dimensional systems with delayed feedback, a numerical study was
made on an undamped chain system of 10 degrees of freedom as shown in Fig.
5.1.9, where

m =10, k=10, r=12,..10. (5.1.44)

To increase the damping of the system artificially, one channel of velocity feed-
back was introduced with the feedback gain v, =-1.0.

If there was no time delay in the feedback, the 10 pairs of conjugate eigenval-
ues of system could be solved by using any commercially available codes for ei-
genvalue problems. The real parts and the imaginary parts of these eigenvalues are
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listed in Table 5.1.1 according to the absolute value of their imaginary parts, from
the minimum to the maximum. In this case, the dangerous eigenvalue was A4, .

Ty Ty Ty Tip

A [ r l—’

kZ k3 k9 klO f(t)
ml -W. ’mq -W-. .o -W mg 'rn/lo .
k 010) 010
7

Fig.5.1.9. A 10-DOF system with a delayed velocity feedback

Table 5.1.1. Real and imaginary parts of eigenvalues of the delay free system and
corresponding critical time delays

r ReA, ImA, T,

1 -0.0021 0.1497 10.375
2 -0.0165 0.4506 3.425
3 -0.0383 0.7500 2.064
4 -0.0660 1.0416 1.501
5 -0.2136 1.3013 0.732
6 -0.0877 1.3555 1.201
7 -0.0431 1.5927 1.023
8 -0.0215 1.7688 0.909
9 -0.0089 1.8964 0.839
10 -0.0022 1.9740 0.799

When the feedback had a time delay in the feedback, the stability analysis of
the high dimensional system became very complicated. For example, the numeri-
cal approaches proposed in (Su et al. 1994) and (Chen 1995) involve very lengthy
algebraic manipulations including the decomposition of singular values and so
forth. However, the new approach written in a few lines of FORTRAN and incor-
porated with standard subroutines of linear algebra completed the analysis within
a few seconds on a PC of Pentium-III. The critical time delays for all pairs of ei-
genvalues determined by NR are listed as the last column in Table 5.1.1.

Intuitively speaking, the higher a natural frequency, the shorter the critical time
delay. So, it was expected that the most dangerous eigenvalue” should be 4,, with
an increase of time delay since the real part of 4,, was the second smallest when
there was no time delay in the feedback. Nevertheless, the most safe eigenvalue”
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As became dangerous first with an increase of time delay, and its real part van-
ished at 75=0.732 . Figure 5.1.10 shows the evolution of eigenvalues A; and A4,
with increase of the time delay. This example indicates that care must be taken
when the feedback of a high dimensional system involves any time delay.

1.0 0.02
a b.
05) 0.01}
Rei 0.0 0.00 S
050 N 001l Tl
-1.0 . NIRRT -0.02 . s -
00 05 1.0 15 20 00 05 10 15 20
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a b.
250

1.95}
1.0 . . . . 1.90 . . —
00 02 04 06 08 1.0 0.0 0.5 1.0 1.5 2.0
T T

Fig. 5.1.10. Variation of two eigenvalues with an increase of time delay; a. A, b. A;
Key: —o—,NR, — ST, ---DT.

In summary, the stability of a linear n-degree-of-freedom system with a single
feedback time delay is governed by the evolution of the 2n eigenvalues of the de-
lay-free system with increase in the time delay, provided that the time delay in the
state feedback is sufficiently short. To study the stability of the system involving
feedback time delay, a perturbation approach is proposed so as to estimate effi-
ciently the evolution of these eigenvalues. The approach can be used in three
forms according to the length of time delay. If the time delay 7 is so short that the
eigenvalue A, of concern yields |4,z|<<1, the simplest form of the approach gives
an expression, similar to the Rayleigh quotient, for the variation of A, proportion-
al to 7. When the time delay is not so short, two alternative forms of the approach
enable one to trace the variation of A, by solving a set of linear algebraic equa-
tionsyorrbyrusingsNewton=Raphsonuiteration. The later form gives the exact nu-
merical evolution of the eigenvalues with increase of time delay.
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Worthy of mention finally is that it is straightforward to generalize the analysis
and the assertions here for the following n-degree-of-freedom system with asyn-
chronous time delays in different feedback channels

n

D [myk (e, ()+kyx (D)= (z)+z uyx, (t—1,)+v, % (t-1,)] . (5.1.45)
Jj=1
As the truncation in Eq. (5.1.21) requires only the small variation of eigenvalues
due to the time delay, the approach described here can be directly used to analyze
the stability of this kind of system also. However, much more computational ef-
forts are required in tracing the evolution of eigenvalues if a system involves
many different time delays as in Eq. (5.1.45).

5.1.4 A Relation of Orthogonality of Mode Shapes

This subsection is an appendix for Subsection 5.1.2, presenting the proof of Eq.
(5.1.30). Consider the following equation of the r-th eigenvalue and its eigenvec-
tor in the state space

A=A Du = 0 I an =0, (5146
U2 L o ooy P [0 6140

Comparing this equation with the first one in Eq. (5.1.18), we can readily find

u,=a,, u,=la,. (5.147)
The adjoint relation of Eq. (5.1.46) reads
(A-A.D=[v), v, 0 ! A,1)=0 (5.1.48)
v, (A- =[v, v - =0, 1.
r r rl r2 _M—]K _M—IC r

whereby we obtain

v+ A v, M ,M ' K=0
{ VatAvo Mo Cry, ’ (5.1.49)

rl :vrl(ﬂ’r +M—1C)‘

From the comparison of the first equation in Eq. (5.1.48) with the second equation
in Eq. (5.1.18), we have

v,=bM, v, ,=b (AM+C). (5.1.50)
Noting the orthogonality relation of adjoint eigenvectors

v, =v, U, tv.,u,,#0 (5.1.51)
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and substituting Eqgs. (5.1.47) and (5.1.50) into Eq. (5.1.51), we obtain
24.b'Ma,+b; (C—V)a,=O0. (5.1.52)
This completes the proof of Eq. (5.1.30).

5.2 Stability Test Based on the Padé Approximation

In this section, the Pad¢ approximation, instead of the truncated Taylor expansion,
is used to simplify the delayed dynamic systems to those described by the ordinary
differential equation with its orders increased. The primary reason of using the
Pade¢ approximation comes from its higher accuracy and numerical stability, see,
for example, (Xu 1990). To make the exposition as simple as possible, the study
will be confined to a linear, single-degree-of-freedom system with two time delays
in the feedback paths of both displacement and velocity, though the extension to
higher dimensional systems is quite straightforward.
The dynamic equation of system of concern is

mx(£)+cx(t)+kx(t)=ux(t—7,)+vx(t—7,)+ f(1), (5.2.1)

where m>0, ¢>0 and k>0 are the coefficients of mass, damping and stiffness,
u and v the feedback gains, ;>0 and 7,20 the time delays, f(¢) the external
excitation, respectively. The characteristic function of Eq. (5.2.1) reads

D(A,7,,7,)=mA? +cl+k—ue ™ —vie ™" . 522
12%2

As analyzed in Section 3.1, Eq. (5.2.1) is asymptotically stable if and only if all
the roots of Eq. (5.2.2) have negative real parts.

The inequality u<k is assumed to hold hereinafter because the system free of
time delay is asymptotically stable only when wu<k . Otherwise, we have
D(0,7,,7,)=k—u<0 and D(+o0,r;,7,)—>+ so that Eq. (5.2.2) has at least one
characteristic root with non-negative real part.

5.2.1 Test of Stability

Equation (5.2.2) includes two exponential functions in unknown A and this fact
gives rise to a great difficulty in the stability analysis. If they are replaced with any
algebraic approximations, the stability analysis of Eq. (5.2.1) can be simplified. In
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what follows, the Pad¢ approximation will be used first in the case of equal time
delays, and then in the case of unequal time delays.

(1) The case of equal time delays

To get an accurate approximation of Eq. (5.2.2) in the case of 7,=7,=r, the Pad¢
(4, 4) approximation, see (Xu 1990), is chosen for the exponential function ¢’ as
following

o 1680+840y+180y>+20y° + *

, 523
1680-840y+180y> -20y° +* (52.3)
with y=-A7 . The error of this approximation is estimated by
2 3 4 ! 2
, 1680+840y+180y~+20y " +y :(4.) ° 0", (5.2.4)

1680—840y+180y°—20y°+y* 89!

It is about 3.9376x10™* when [y|=1. It increases to 2.0156x10~ while =2
When |y|= 3, the error reaches 7.7487 x10™*.
By means of Eq. (5.2.3), Eq. (5.2.2) can be approximated as

D(A,7,0)=a, 8 +a, X +a, A +a, A +a, A +a A+ay (5.2.5)
where
a,=mt*, a,=20m7’ +(c-v)r*,
a,=180m 1> +20(c+v)r> +(k—u)r*,
a,=840mr+180(c—v)r* +20(k+u)7>,
a,=1680m+840(c+v)t+180(k—u)r>,
a;=1680(c-v)+840(k+u)r, a,=1680(k—u). (5.2.6)

When the time delay is sufficiently short, the approximate characteristic function
in Eq. (5.2.5) is in very good agreement with the original characteristic function in
Eq. (5.2.2) within a certain range, say, |17]<3.

To confirm the assertion about the agreement, we study the asymptotically sta-
ble region of the delayed dynamic systems on the plane spanned by the feedback
gains (u,v) . In general, the stability boundary, defined by D(iw,r,7)=0, between
the stable and unstable regions on the plane of (u,v) for a given time delay may
look very complicated. As shown in Subsection 3.5.1, the stability boundary may
intersect with itself cven many circles if the time delay is sufficiently long. Yet,
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what we are concern with is the bounded, connected asymptotically stable region
containing the origin (0, 0) on the plane of (u,v) as shown in Fig. 5.2.1, where
the curve is the marginal stability condition D(iw,7,7)=0 and the vertical line is
the marginal stability condition u=k of the system without time delay. Such an
asymptotically stable region exists provided that the time delay is short enough,
say, shorter than the natural period of the system without time delay. In this case,
D(iw,r,r) gives a very good approximation to the marginal stability boundary of
the original characteristic function.

aiaﬁﬁzo//
0| A u
Stable region
C

Fig. 5.2.1. Stable region on the plane of («,v) in the case of equal time delays

From the conditions D(iw,r,7)=0 and D(ie,z,r)=0 for marginal stability, it is
easy to get the feedback gains of the original system on the stability boundary

u=(k—mo*)coswr—cwsinwr,

1 . (5.2.7)
v=—[(k—mw"*)sin@t+cocosar],
@
and those of the approximate system on its stability boundary
a2, =1 (5.2.8)
r r

where
p=—mao" r® +kaw®r® +40cw®t” +760mw®r® - 7160k r°
—8880cw®r’ —69360mw’r* +69360kw*r*
+369600cw*r> +1310400mw*r* -1310400kew*c?

=2822400c@*7=2822400m o’ +2822400k,
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q=-2822400mw*r-1310400cw>r2 -369600kw>7>
+369600mw* ° +2822400c+2822400kr +69360cw*r*
+8880kw* > —8880mw°r> —760c@®7® —40kw®r’
+40ma®t” +cw®®,
r=2822400+1008000° 7> +21600*7* +400° 7 +0®7® . (5.2.9)

For a system with given m, ¢, k and , it is easy to find numerically the value @,
corresponding to the point C in Fig. 5.2.1 when the stability boundary of the ap-
proximate system first intersects with u=k on the half-plane v<0. In the follow-
ing, we give an estimation of @ first.

Let g=p—kr, then we define

2,=8| .., =—1580601mw’ ~2461640c 1344800k , (5.2.10a)
2=8| 1rr =1357824ma* ~2967040c 4620800k , (5.2.10b)
2:=8|.,..,=3900519m > ~558360cw— 7840800k . (5.2.10¢)

Equation (5.2.10a) implies that the stability boundary on the plane of (u,v) can
not intersect with u=k when wr=1 since g,=0 has no positive solution o .
Solving g,=0 for @ gives

~ 1483520c+\/(14835200)2 +1357824x4620800mk
- 1357824m ‘

(5.2.11a)

W,

If 0<r<2/w,, then g,>0. In this case, the stability boundary definitely intersects

with u=k for some wre(l, 2), and there exists @&" e(1/7, 2/7) . Similarly, from
Eq. (5.2.10c), we get the unique positive root of g,=0

_279180c+J(279130c)2+3900519x7840800mk
B 3900519m '

o, (5.2.11b)
For all 0<7<3/w,, therefore, we have g;>0. It follows that the stability
boundary intersects with u=k for certain wre(l, 3), and consequently, there
exists @ e(l/z, 3/r). For the original system, a similar value @" can also be

found numerically. It is known that @ < @&", and that &° is almost the same as
" . Some numerical examples about @ are given in Table 5.2.1.
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Table 5.2.1. A number of examples for determining "

System parameters 2/w, 3w, Intersection tests
m=1.0, ¢=0.02, &=1.0 1.071 2.113 =0.65, w" =2.68, @ r=1.74
m=1.0, ¢=1.50, &=1.0 0.487 1.962 7=0.65, @ =3.28, ©'7=2.13
m=1.0, c=2.00, k=1.0 0.396 1913 =065, 0" =342, w'7 =222
m=1.0, ¢=5.00, £&=1.0 0.178 1.648 r=0.65, @ =3.92, ©'r=2.55
m=1.0, ¢=20.0, k=1.0 0.045 0.871 0,65, @ =4.52, @'z =2.94

0.0006] 5. 0.0006] 1,
w»  0.0004} « 0.0004}
: .
& s
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Fig. 5.2.2. Errors of approximation with an increase of frequency; a. c=1.5, 7=0.65 and
@ =3.277, b. ¢=2, 7=0.65 and @ =3.415, ¢. ¢=5, r=0.65 and @ =3.923, d. c=L.5,
=03 and 0" =6.143

To measure the difference between the asymptotically stable regions of the ap-
proximate system and the original system, two errors are defined as

Au=u—u, Avsv-v. (5.2.12)
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Once the value &@" or @ corresponding to the point C on the stability boundary
is obtained, the approximate error curves of {(@,4u) | 0O<w<d'} and
{(w,4v) | 0<w<®"} can easily be figured out.

Figures 5.2.2a, 5.2.2b and 5.2.2¢ show the errors in three typical cases corre-
sponding to an under-damped system, a critically damped system and an over-
damped system. An additional example in Fig. 5.2.2d shows the effect of time
delays on the under-damped system. Without loss of generality, the parameters m
and £ in these examples are set to be one. Otherwise, they can be scaled to be one
by using dimensionless time and new parameters.

The above numerical examples show that the Pad¢ approximation of the char-
acteristic function gives excellent accuracy so that the stability boundary and the
asymptotically stable region of the approximate system are almost the same as
those of the original system within the concerned scopes. The errors of approxi-
mation are considerably small and come mainly from the approximation of u , and
fi<u when @ varies from some @' to @  with small @ —~@*>0. This fact
means that a dangerous case may happen only when the system is designed to pos-
sess a very small negative value v—v(@") and a very small positive value k—u .
To avoid such a danger, v should be increased alternatively to a little bit larger
value in design.

According to the Routh-Hurwitz criterion, all the roots of D(A,7,r) have nega-
tive real parts if and only if

ay>0, a,>0, a,>0, a,>0, a,>0, a,>0, a,>0; (5.2.13a)
aa,—aya, >0, aa,a,+a,aa;s—a, a,~aa; >0 ; (5.2.13b)

2
a,a,a;a,+2a,a,a,as+a,a,a,a;+a," a,a,

(5.2.13¢)
_ 2 2 2 2 2 2 0:
a,aa;,a,—a,"a,” —a,"a;," ~a,a,a,” —a,a,”a;>0;
+2a’ +a 2 g
aa,a,a,a;+2a, a,asa,+a,” a,a,a,+2a,0,a,a;
+ *+a,a;’ 2 *a’ 5.2.13d
a,a,a,as" +a,a, ag—a,a,a, ag—a,a,” as (5.2.13d)

2 2 30723 2 2,750
—a,"a, as;—a, a," —3a,a,a,a,a,~a,a,"a,a,—a, a;” >0.

For given system parameters m, ¢, k and 7, all the combinations of (u,v) subject
to Eq. (5.2.13) give the stable region, which looks like that in Fig. 5.2.1, of the ap-
proximate system.

On the basis of the above analysis, a simple stability test approach is estab-
lished for.the dynamic system with,short,time delays as follows.
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Algorithm 5.2.1

(a) Test the stability of the approximate system by using Eq. (5.2.13).

(b) If the approximate system is unstable, the approach fails. Otherwise, the
original system is stable for 7<min(3/w; Jk/m).

(2) The case of unequal time delays

If the time delays are distinct, the feedback gains on the stability boundary yield

u =——1—[(k—ma)2 )eos(wr,)—cwsin(wr, )],
cos(wr, —wt,)
1

- wcos(wT, —wT,)

(5.2.14)

v [(k—ma)z)sin(an'l )+cwcos(wr,)],

which depicts a more complicated curve on the plane of (,v) than that in the case
of equal time delays. However, the system has an asymptotically stable region
similar to that in Fig. 5.2.1 if both 7, and |r] —rz| are small enough. In this case,
the Pade (4, 4) approximation is not appropriate since it results in a very small co-
efficient O(z,'7,") of the leading term in the characteristic equation of approxi-
mate system. To avoid this trouble, some lower order Padé approximations, say,
(3, 2) or (2, 2) approximations, are more preferable. The Pade (3, 2) and (2, 2) ap-
proximations to e’ , see (Xu 1990), are respectively as following
60+36y+9y°+y> 213!

¢ 2 s o0y, 52.15
60-24y+3° se” TOV) (52.15)

12+6y+y°  (2)° 5,
12-6y+y* 45

y

0(°). (5.2.16)

If the functions e *' and e™* in Eq. (5.2.2) are approximated by using Egs.
(5.2.15) and (5.2.16), Eq. (5.2.2) can be approximated as

15(/1,11 ,0)=by A0 +b, 2 +b, A +b A +b A +b A+ =0, (5.2.17)
where
by=3m 1122'22 , b=r,7,[24mt,+3(c—Vv)r,7,+18m7 +ur't,],

b,=36mt,> +60mz,’ +144mz, 7, +(3k-9u)7,’1,’

+1 8(c+v)1'1212 +24(c-v)1, z,” +6ut’t,,
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b,=288m, +360mz, +(24k+36u)7,7,° +(1 8k—54u)z,’z,

+(c—v)(367,” +607,” ) +144(c+v)1,7, +12u7],

b, =720m+288(c—v)z, +360(c+v)r, +(144k +216u)7 7,
+(36k—108u)7] +60(k—u)r?,

b =(288k+432u)7, +360(k—u)7, +120(c—=v), be=T20(k—u). (5.2.18)

The stability test can be made for the approximate system by using Eq. (5.2.13).

With the same argument, we can numerically find the value @” of a given sys-
tem for small distinct time delays 7,#z, with |7, ~7,|<<1. Usually, such an value
" is almost the same as that of the corresponding system with 7, being the time
delays in both displacement and velocity feedback paths. The accuracy of ap-
proximations in Egs. (5.2.15) and (5.2.16) is not so good as that of Eq. (5.2.4)
used in the case of equal time delays, still, the connected bounded stable region of
the approximate system is in good agreement with that of the original systems.
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Fig. 5.2.3. Asymptotically Stable regions at different damping and time delays; a. c=1.5,
7,=0.15 and 7, =0.18, b. c=1.5, 7,=0.50 and |7, =0.45, c. ¢c=2.5, 7,=0.18 and 7, =0.15, d.
¢=2.5, 7,=0.45 and 7,=0.50; Key: — accurate, —o— approximate
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Figure 5.2.3 illustrates four case studies where the parameters were set to be
m=1 and k=1.1If |r,—7,| is not small, the stable region may be successfully ob-
tained as shown in Fig. 5.2.4. However, it is not always the case. Like the case of
equal time delays, on the stability boundary within the scopes of concern, the ve-
locity gain of the approximate system is almost equal to that of the original sys-
tem, the main approximate error still comes from # . A dangerous case may occur
when the feedback gains are chosen as the values in the lower-right corner of the
stable region of the approximate system. This case can be avoided by choosing
alternatively a little bit larger value of the velocity feedback gain.

a. .
2} L 21

Stable region 0

21
Stable region 2t
41 L=t C
\ C
. . . 4 . .
-8 -6 -4 2 0 1 -6 -4 2 0 1
u u

Fig. 5.2.4. Asymptotically stable regions when |7,—7,| is not small; a. ¢=1.5, r,=0.75, and
7, =0.50, b. c=1.5, 7, =0.35 and 7, =0.70; Key: — accurate, —o— approximate

5.2.2 Test of Interval Stability

In this subsection, the idea of the Padé approximation is extended to checking the
interval stability of Eq. (5.2.1) with help of well-known Kharitonov theorem in
(Kharitonov 1979). The analysis begins with the case of equal time delays
7,=7,=7 . Assume that the system parameters fall into the corresponding interval
as following

y<; u, v<v<y, 0<r<r<7, (5.2.19)
and define
@,=max{w; | m<m<im, c<c<c, k<k<k}
_2791805+\[(2791805)2+3900519><784080()m]; (5.2.20)

3900519m
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Then, the Padé approximation gives the boundary of asymptotically stable region
of the approximate system on the plane of (u,v) for each combination of the sys-
tem parameters O<m<m<m, 0<c<c<¢ and 0<k<k<k if0<7T<3/@;. Once the
characteristic equation of the delayed dynamic system is simplified to Eq. (5.2.5)
in this case, the Kharitonov Theorem can be implemented to test the interval sta-
bility. From the practical point of view, it is reasonable to assume that x7>0 and
w>0. Then, by using Eq. (5.2.19), we have

a,<a,<a,, j=0,L...6, (5.221)

where a; are the coefficients in Eq. (5.2.5), and the corresponding bounds a;
and @, are defined as following

F R —
a,=mrt , a,=Emrtv
a,=20me’ +er' —vrt, @ =20m7 4Tt —vr?
a,=180mz* +20cz’ +kz* ~ur* +20v 7,
4, =180/ 72 +2067° +kT* —ur’ +20v7°,
a,=840mr+180cr’ +20kz° +20uz’ ~180v 72,
@3 =840m 7+180G 72 +20i 7> +20ut’ —180v 72,

a,=1680m+840c7+180kz> ~180u 7’ +840v7,
4, =16807+8405 7+180k 72 —180uz’ +840v7,

a,=1680c+840k7+840u 716807,
a,=16802+840k 7 +840u 71680y,

a,=1680k-1680u, a =1680k —1680u , (5.2.22)

with the following simplified notions for different bounds of feedback gains and
time delays

j=1,234,  (52.23a)

— |v7/, v>0, . 7 v>0,
vr-’z{ = T’E{v_r Y j=1234.  (5223b)



178 5 Effects of a Short Time Delay on System Dynamics

According to the Kharitonov theorem, it is sufficient to check the stability of
four cases of the coefficients in Eq. (5.2.5) when testing the interval stability of
Eq. (5.2.5) subject to Eq. (5.2.21). These four cases are

(ay,a,,a,,05,0,,05,0,)=(ay,a,,0,,05,0,,05,4d,) , (5.2.24a)
(ay,a,,a,,05,0,,a5,05)=(a,,a,,,,35,0,,5,3 ) » (5.2.24b)
(G9:a,,8,,85,0,,05,05)=(a,,,,8,,03,8,,d5,05) » (5.2.24¢)
(Gg5a,5a,505,0,4,05,05)=(a 50,0, 83,8 4,05, d¢) - (5.2.24d)

From the Routh-Hurwitz conditions in Eq. (5.2.13), the stability of each case can
be easily tested. There follows the approach to testing the interval stability of a
dynamic system governed by Eq. (5.2.1) as following.

Algorithm 5.2.2

(a) Check the stability of the nominal system by using Eq. (5.2.13) and com-
pute @; . If the nominal system is asymptotically stable and 0<7<3/@;, then go to
the next step.

(b) Test the stability of system in the four cases in Eq. (5.2.24) by using again
Eq. (5.2.13). If the system is asymptotically stable in all of the four cases, then the
interval stability is justified.

Example 5.2.1 Consider an illustrative example of the linear dynamic system
with nominal parameters m=1, ¢=3, k=1, 7= 0.55, u=-2, and v=-3. It is
easy to see from Eq. (5.2.13) that the system is asymptotically stable.

We check first the interval stability of the system with 25% variation in every
system parameter. That is, the system parameters are allowed to vary on the fol-
lowing intervals

0.75<m<1.25, 2.25<¢c<3.75, 0.75<k<1.25,

0.4125<7<0.6875, -2.50<u<-1.50, -3.75<v<-2.25. (5.2.25)

Then we have a,=-57.0867. By using the Kharitonov theorem, we find that the
approximate systems with the parameters on the given intervals are not stable, so
the method fails to test the interval stability of the original system.

If the variations in the system parameters are confined to 20%, that is

0.80 <m< 120, 2.40<c<3.60, 0.80<k<1.20,
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0.44<7<£0.66, -2.40<u<-1.60, -3.60<v<-2.40, (5.2.26)
we have

0.030<a,<0.228, 1.543<a,<8.266, 11.36<a,<110.9,
450.5<a,< 1234, 318.8<a,<3407, 1200<a,< 12169,

4032<a,< 6048, @,=1.2642. (5.2.27)

The Kharitonov theorem indicates that the approximate systems with the parame-
ters on the new intervals are asymptotically stable. As T<min(3/@;, \/k/—n? ), the
interval stability is justified.

In the case of unequal time delays, as stated in Subsection 5.2.1, the asymptoti-
cally stable region may not be as simple as shown in Fig. 5.2.1 if |r,—7,| is not
very small. Thus, the approach may be very poor in the test of interval stability for
the systems with variable unequal time delays if max(|7,—z,||7,-z,]) is not very
small.

In practical test of asymptotic stability and interval stability, great care must be
taken when the system parameters are chosen with a very small negative value
v—v(@") and a very small positive value k—u . If this is the case, the negative
velocity feedback gain should be increased alternatively to a little bit larger value
so as to make the test result be more reliable if the given system is tested to be as-
ymptotically stable by using the approach.

In summary, the presented approach of stability test to the delayed dynamic
systems by using the Padé approximation is so simple that the stability test can be
completed by using a calculator. Though this approach may not always be suc-
cessful, it is an effective approach of stability test with high accuracy within the
scope of concern both for the asymptotic stability and the interval stability. In ad-
dition, the idea of the Padé approximation can be extended to the study on more
complicated delayed dynamic systems.

5.3 Dynamics of Simplified Systems via the Taylor Expan-
sion

This section presents a study on the validity of the Taylor expansion of delayed
feedback from the viewpoint of system stability. We first check the effectiveness
of the,Taylorsexpansionyof delayedsstate; feedback for a linear system, and then
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study the dynamics of a nonlinear system with delayed velocity feedback through
the use of singular perturbation theory.

5.3.1 Linear Systems with Delayed State Feedback

For simplicity, the study in this subsection is confined to a linear single-degree-of-
freedom system with delayed state feedback as following

mx(t)+cx(t)+ke(t)=ux(t—7)+vx(t—1,), (5.3.1)

where m>0, k—u>0, ¢—v>0 such that the system is asymptotically stable when
the time delays totally disappear. The analysis in Subsection 5.1.1 indicates that
Eq. (5.3.1) is asymptotically stable if the time delays 7, and 7, are short enough.

When the time delays are very short, it is reasonable and very popular for engi-
neers to replace the delay terms in Eq. (5.3.1) with the following Taylor expan-
sions

ux(t—rl)=u[x(t)—rlx(z)+lr35c'(t)—irfsc'(r)+lr;‘x<4> (H+0(z))],
21 61 24 (5.3.2)
vfc(t—rz)=v[5c(t)—rzjc'(t)—i-Erzz'fc'(t)—gT;x“)(t)+0(r§ ).

Hence, Eq. (5.3.1) can be simplified as one of the following ordinary differential
equations, depending on the order of truncation

a,i(t)+a,x(t)+a,x(1)=0, (5.3.3a)
a;x(f)+a,x(t)+a,x(t)+a,x(t)=0, (5.3.3b)
a4x(4) (O+a, X () +a,%(t)+a,x(t)+a,x(t)=0, (5.3.3¢)
where
a,=k-u, a,=c+ut,~v, a,=m-—ut}+vr,,
1 (5.34)
a,=—utr, —vtl, a, —aurf‘+ VT3,

For very short time delays at the same order, Eq. (5.3.4) becomes

{ao =k—u, __a,=c-v+O0(7)), a,=m+0(z,), (5.3.5)

a,=0(r;), a,=0(13), -
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In what follow, we examine the efficacy of the above approximation for different
truncations in the Taylor expansion from the viewpoint of stability.

If the time delays appear in the feedback, but short enough, a,, a, and a,
keep positive and Eq. (5.3.3a) remains the asymptotic stability of delay free sys-
tem. In this case, Eq. (5.3.3a) is topologically equivalent to Eq. (5.3.1) and the
Taylor expansion is effective.

Equation (5.3.3b) is an ordinary differential equation of extended order and has
a very small coefficient a, in front of the highest order derivative. The differential
equation with a very small coefficient of the highest order derivative is called the
singularly perturbed differential equation. If Eq. (5.3.3b) is asymptotically stable,
the Routh-Hurwitz criterion requires that

a,>0, a,>0, aa,—-a,a,>0, ay(aa,—a,a;)>0. (5.3.6)

Substituting Eq. (5.3.4) into the above inequalities gives

%urf—%vr§>0, m+0(r,)>0, m(c-v)+0(z,,7,)>0, k-u>0. (53.7)

The second, the third and the fourth inequalities in Eq. (5.3.7) always hold true for
very short time delays. The first inequality, however, indicates that the Eq.
(5.3.3b) may become unstable and topologically different from Eq. (5.3.1) when

a, :%u T —%VTZZ >0 (5.3.8)

does not hold. If this is the case, the Taylor expansion of higher orders does not
work for Eq. (5.3.1).
For Eq. (5.3.3¢), the Routh-Hurwitz criterion imposes another condition

a, =—%u 7} +%vr§ >0. (5.3.9)

The Taylor expansion for delayed feedback, therefore, is only effective under
certain conditions.

Hence, great care must be taken in the stability analysis of simplified differenti-
al equations of extended order when the Taylor expansion of higher orders is used
to reduce the truncation errors, since these differential equations are singularly
perturbed and may feature totally different dynamics.

For instance, Eq. (3.1.34) indicates that Eq. (5.3.1) in the case of small damping
c<+/2mk and equal time delays 7,=7,=7 is delay-independent stable if the ab-
solute values of feedback gains are so small that
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2 2
uz c -V

—+ -1)°<1. 5.3.10
k? ( 2mk ) ( )
From Eq. (5.3.8), however, the asymptotic stability of Eq. (5.3.3b) requires that
ut=3v>0. (5.3.11)

If no displacement feedback is used, the velocity feedback should be negative.
This is an additional requirement owing to the Taylor expansion of higher orders
for the delayed feedback.

Furthermore, when Eq. (5.3.3c) is implemented to predict the system stability,
Eq. (5.3.9) requires that

ut—4v<0. (5.3.12)

If no displacement feedback is involved, Eqgs. (5.3.11) and (5.3.12) are contradic-
tive. This contradiction indicates again that the Taylor expansion of higher orders
for the delayed feedback does not give correct analysis of system stability if the
simplified differential equations are singularly perturbed.

The effect of a short time delay on the simplified model governed by the sin-
gularly perturbed differential equations will be further discussed in next subsec-
tion through an example of the Duffing oscillator with delayed velocity feedback.

5.3.2 Nonlinear Systems with Delayed Velocity Feedback

This subsection deals with a nonlinear autonomous system with delayed velocity
feedback as following

$(O)+ p(x(e), 5 (t)=vi(t—-1), v£0, 7>0. (5.3.13)

For a very short time delay 7, the truncated Taylor expansions of different orders
for the delayed velocity feedback in Eq. (5.3.13) give different simplified ordinary
differential equations as following

S X+ p(x(2),x(2))=v[X(0)-7(1)], (5.3.14a)

X(t)+ p(x(t),fc(t))zv[)'c(t)—D'é(t)+£i2—3c'(t)] , (5.3.14b)

The dynamics of Eq. (5.3.14a) is clear if 7 is so short that the condition
1+vz>0 holds. Thus, attention hereinafter is paid to Eq. (5.3.14b), which is a sin-
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gularly perturbed differential equation. By using the state variables y =x,
y,=x, y3=%, Eq. (5.3.14b) can be recast as a set of differential equations

V1=Yas
V2=Vs, (5.3.15)

)
&'y, = 1Py~ H14ve)y 128 (71.32.75.6),

where £=7<<1 is a small, non-negative parameter.
If £=0, Eq. (5.3.15) degenerates to a set of ordinary differential equations

{Y 1= (5.3.16a)
y2 :y37

which is subject to an algebraic constraint
2
0="1P(302)= w2 +31=8(31:32,73,0) (5.3.16b)

Solving Eq. (5.3.16b) for y, yields
Y3=h(y,y)==p(y1,y2)+vy, . (5.3.17)

Obviously, 4(y,,y,) is an invariant manifold of Eq. (5.3.16) in R*. That is, any
trajectory of Eq. (5.3.16) starting from A(y,,y,) does not leave A(y,,y,) forever.
Because the time scale used here is slow compared with the fast one used later,
h(y,,y,) is called the slow manifold. Substituting it into Eq. (5.3.16a) gives

{y,‘zyz’ (53.18)
Vy==p(¥},¥,)+vp,.

Eq. (5.3.18) is called the differential equation of reduced system in the theory of
singularly disturbed differential equations. It governs the motion of reduced sys-
tem on the slow manifold. Here, the reduced system is a system without time de-
lay.

In the study of singularly perturbed differential equations, it is helpful to intro-
duce a new time scale

s=—. (53.19)
&£
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Because ¢ is very small, s varies much faster than . Hence, the variables ¢ and
s are usually referred to as the slow time and the fast time, respectively. To
distinguish the derivatives with respect to different time scales, the prime is used
to represent the differentiation with respect to the fast time s. Substituting ¢ in
Eq. (5.3.15) by s yields

y;:gzyz’
yi=e'y,, (5.3.20)

, 2
V3 =';[p(J71 3Y2) =V, +(14vE) y31=8(11,3,2,Y35€)-

For Eq. (5.3.20), any point (y,,¥,,A(¥;,¥,)) is an equilibrium when £=0 since
g2(y1,¥2,7(¥1,5,),0)=0 . However, this is not true for Eq. (5.3.15) because Eqgs.
(5.3.15) and (5.3.20) are not equivalent if £=0.

The dynamics of Eq. (5.3.20) with £=0 is characterized by a one-dimensional
differential equation

, 2
Y3:;[f(y1ay2)‘W2 +;1=8(31,3,,350) (5.3.21)

where (y,,y,) can be regarded as constant parameters since y,=0 and y;=0.
Given a pair of (3,,7,), Eq. (5.3.21) governs a fast motion approaching to the
slow manifold 4(y,,y,) if v<0. This motion is usually called the fast manifold
for short.

Now, it is clear that Egs. (5.3.21) and (5.3.18) govern two kinds of extreme dy-
namics associated with Eq. (5.3.15) respectively when &£=0. That is, the fast
manifold approaching to the slow manifold if v<0 and the motion, which may be
simple or very complicated, on the slow manifold. The aim of further study is to
gain an insight into the dynamics of Eq. (5.3.15) for very small & from the
knowledge of the asymptotic behavior of two "limit" Eqgs. (5.3.18) and (5.3.21).

Example 5.3.1 To demonstrate how to analyze the dynamics of Eq. (5.3.15),
we study the dynamics of a Duffing oscillator under delayed velocity feedback
around its equilibrium. Following Eq. (1.1.13), let

px,%)=x+p’ +24% (53.22)

where £>0. In what follows, attention is paid to the case when >0 .
If €=0, Eq. (5.3.15) becomes
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{’f 1= (5.3.23a)
Y2=Y35

with an algebraic constraint
Y3 ==+ +28,)+ vy, . (5.3.23b)

Figure 5.3.1 illustrates the slow manifold (5.3.23b), where a trajectory of Eq.
(5.3.23a) spirally approaches to the equilibrium, when x=0.1, {=0 and
v==0.2.

Fig. 5.3.1. A trajectory on the slow manifold
When ¢#0, Eq. (5.3.15) becomes
).}1 =V2»
Y2=Y35 (5.3.24)

)
P =~ + 1y} +(26 =)y, +H(1+vE) y, .

As it is difficult to deal with this singularly perturbed differential equation, we
turn to its equivalent form in the fast time scale, namely,

r_ .2
=€ V2o

yy=€’y3, (5.3.25)

2
Yi==in + 1y} +(28 =)y, +H(1+ve) y; 1.

eorem in the theory of singularly per-
1995), can not be applied directly to this
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equation. The analysis below will be based on the center manifold theorem of or-
dinary differential equations, see (Guckenheimer and Holmes 1983).
Let £ be a function in s and rewrite Eq. (5.3.25) as following
&'=0,
=€y,
yi=£%y,, (5.3.26)
, 2
Vo=t H20 )y, + (L))

Equation (5.3.26) has a unique equilibrium (0,0,0,0) since ©>0. According to
the following Jacobian of Eq. (5.3.26) at (0,0,0,0)

00 0 0
00 0 0

J=0 o 0 ol (53.27)
0 2 2%X-n 2
A% v v

it is easy to confirm that the equilibrium is asymptotically stable if and only v<0.

Now we study the local dynamics of Eq. (5.3.26) around the equilibrium. Using
the center manifold theorem, we can prove the following fact. That is, for Eq.
(5.3.26), there exists £">0 and an invariant manifold

Vi=H(,9,,€), (5.3.28)

which is passing through the point (0,0,0,0) and tangent to the super-plane of
y,=0 at (0,0,0,0) such that for each £€[0, £'] and all y,”+y,”<r?

H(y,9,,6)=h(y,,y,)=0(¢), (5.3.29)

where A(y,,y,)=H(»,,y,,0) . Th invariant manifold in Eq. (5.3.28) is also called
a slow manifold. On each of such a manifold, Eq. (5.3.26) can be simplified as

£'=0,
yi=£%y,, (5.3.30)
V=& H(,,¥,6)-
The local dynamics of Eq. (5.3.26) around (0,0,0,0) is fully determined by the
motion on the slow manifold H(y,,y,,€) .

In what follow, the slow manifold and Eq. (5.3.30) are determined. Differen-
tiating Eq. (5.3.28) at both sides with respect to s leads to
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Lo O OH
Tt
Substituting Eq. (5.3.26) into the Eq. (5.3.31) gives the governing equation of the
slow manifold H(y,,y,,&)

52[?‘111‘)’2 +‘QILI‘)’3 ]:‘:‘Z‘[.VI +/Uy13 +Q2EVy, +(1+ve)H(y,3,,6)].  (5.3.32)
o , v

In general, it is impossible to solve this partial differential equation for
H(y,,y,,€) . So, we turn to looking for an approximate solution of Eq. (5.3.32) as

(5.3.31)

following
H(31,¥2,6)=hy(y1,y:) 0 (31,3,)e+h, (3, Y, )52 t+---. (5.3.33)

Substituting Eq. (5.3.33) into Eq. (5.3.32) and equating the same power of ¢, we
obtain

(1 y) =1y + i +Q26 =)y, (5.3.342)
B (Y= + 7 +H2E V)], (5.3.34b)
By (3159s )=—%v{yz +Bv=2)y, + ) +26 V), 1} (5.3.34¢)

Substituting Eqgs. (5.3.33) and (5.3.34) into Eq. (5.3.30) gives the differential
equation of reduced system

&'=0,
=€y, (5.3.35)
Yy ==& [+ +H2E =)y, [+ + i +(2 )y, 1+0(E*).

It is easy to find that if £>0, the unique equilibrium (0,0) is asymptotically sta-
ble when v<0. According to the analysis above, we conclude that the equilibrium
(0,0,0) is asymptotically stable if and only if v<0 and £>0 small enough.

Given £=0.3, the slow manifold and a phase trajectory of Eq. (5.3.24) are
shown in Fig. 5.3.2 for 1=0.1,{=0,v=-0.2. Worthy of mention is that the two
slow manifolds in Figs. 5.3.1 and 5.3.2 are different though they look very similar.
Figure 5.3.2 illustrates that the trajectory starting from a state point above the slow
manifold goes down to the slow manifold very rapidly and then approaches to the
equilibrium along a spiral on the slow manifold. It is interesting that & taken here
is not very small.
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Fig. 5.3.2. A trajectory approaching to the siow manifold first and then to equilibrium

As a result, the dynamics of a nonlinear autonomous oscillator with the nega-
tive velocity feedback involving a short time delay includes two stages. The first is
a very fast decay, and the second is very close to the vibration of delay free system
around the equilibrium. Here, the negative gain of velocity feedback guarantees
the rapid decay owing to the singularly perturbed term vz?%(¢)/2 in Eq.
(5.3.14b).

If the condition of v<0 is released, Eq. (5.3.14b) fails to predict the proper dy-
namics of Eq. (5.1.13). As will be seen in Section 7.3, for instance, the Duffing
oscillator with delayed velocity feedback may exhibit very abundant nonlinear dy-
namics apart from the decaying to the equilibrium.




6 Dimensional Reduction of Nonlinear Delay
Systems

Time delays usually give rise to great difficulty in the dynamic analysis of con-
trolled mechanical systems. The difficulty increases so dramatically with an in-
crease of system dimensions that the analytical results for the dynamics of delay
systems of high dimensions are considerably few. So, it is highly demanded to de-
velop some techniques for the reduction of system dimensions.

As stated in Section 2.3, the state space of a delay differential equation is a kind
of Banach space and the dimension of solution space is infinite. To simplify the
delayed dynamic systems, great efforts have been made for the reduction of sys-
tem dimensions. The available approaches include the truncated Taylor expansion,
the Padé approximation in (Lam 1993) and (Wang and Hu 1999b), the Hankel op-
erator based method in (Ohta and Kojima 1999), and the center manifold method
in (Faria and Magalhaes 1995) and (Diekmann et al. 1995), or referred to as the
integral manifold approach alternatively in (Hale 1977). As analyzed in Sections
2.3 and 5.3, the truncated Taylor expansion method, albeit very simple, may give
rise to wrong dynamics in general. The Hankel operator method can be used only
for linear systems. The center manifold reduction is essentially a nonlinear
method. In the implementation of this method, it is necessary to determine wheth-
er the system has a finite number of characteristic roots with zero real parts and
the remaining characteristic roots have negative real parts. This is usually a hard
task to complete for the high dimensional systems with time delays. To avoid this
tough problem, the special features of system should be made advantage of.

In engineering, a great number of mechanical systems are composed of two
kinds of subsystems, one is relatively stiff and has a high fundamental natural fre-
quency, while the other is relatively soft and has a low fundamental natural fre-
quency. Such a kind of systems is usually referred to as the stiff-soft systems. Ex-
amples of those systems include the ground vehicles discussed in Subsection
1.1.2, where the vehicle body is supported by soft front and rear suspensions and
harder tires, the buckled viscoelastic beam supported by stiff vertical columns, etc.
Forpthepdelay=freendynamicysystemspcomposed of stiff and soft subsystems, the
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equations of motion can be formulated, by introducing a small singular parameter
defined as the ratio of the fundamental natural frequencies of two subsystems, as
singular perturbation of the equations of motion of the soft subsystem. Then, the
theory of geometric singular perturbation in (Frenichel 1979) offers a natural
analytic-geometric tool to deal with the dynamics of systems involving stiff-soft
subsystems. Based on the singular perturbation approach, the so called slow in-
variant manifold and fast invariant manifold can be introduced so that the domi-
nant dynamics of a stiff-soft system is studied on the slow invariant manifold, the
dimension of which is identical to that of the phase space of soft subsystem. This
case has been intensively studied, see (Bajaj et al. 1997) and (Georgiou et al.
1998). To the best knowledge of the authors, however, no such results are avail-
able for the dimensional reduction of delayed dynamic systems involving stiff and
soft subsystems.

In this chapter, some basic facts on the decomposition of the state space are
presented first. Then, an outline of the center manifold reduction is given for gen-
eral functional differential equations in critical cases. Afterwards, the center mani-
fold reduction is presented for the delayed dynamic systems involving stiff and
soft subsystems governed by singularly perturbed differential equations. As an ap-
plication of the proposed approach, the stability analysis is made for a quarter car
model with active chassis.

6.1 Decomposition of State Space of Linear Delay
Systems

This section deals with the linear delay differential equations in the frame of linear
functional differential equations. For this purpose, given a positive number 7 , let
C=C([-r, 0],R") be the Banach space of continuous functions mapping
[-z, 0] into R".For each geC, the norm |[@|. =sup_ . |#(0)| is defined. Here,
|I-| is any norm in R”. As done in Subsection 2.2.1, the linear autonomous differ-
ential equation with a time delay can be cast as a functional differential equation
in C as following

x()=L(x,), xeR", >0, (6.1.1)

where x,(8)=x(t+68) for —r<0<0, L is a linear operator defined as

L@)=[ [dn0190), (6.12)
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through a bounded variation matrix function #(&) . The proof of the main results
in this section can be found in (Hale 1977) and (Hale and Lunel 1993).

To focus on the effect of initial function geC, let x,(6,4)denote the solution
of Eq. (6.1.1) starting from x,(#)= ¢ . Define a mapping T(¢):C—C as

T(1)(@)=x,0.9). (6.1.3)

It can be shown that T'(¢) has the following properties.

(a) T(0)=1I.

(b) T(t+s5)=T()T(s) forall t>0 and s>0.

(c) T(¢) is bounded for each >0 and is strongly continuous on [0, +©), i.e.,
lim,_, |[T(*)¢—-T(s)@||=0 for 120 and ¢ € C.

(d) T(¢) is completely continuous (compact ) for t>7. That is, T(¢), t>7 is
continuous and maps any bounded set into a precompact set.

Therefore, T(t), t>0 is a strongly continuous semi-group of linear operators
in Con [0, +o0), and the infinitesimal generator 4 of T(¢) can be defined as

A= lim T (XP)-4), (614)

provided that the limit exists. It can be shown that the domain D(A) of A4 is den-
se in C, and the range R(A) is in C. Here, a set S, is said to be dense in the set
S, if any point s€S, is the limit of a point sequence of S, . Direct computation
shows that for all geD(A4), we have

dg(9)

A= ag * L0 (6.1.5)
L(g), 6=0,
and
%T(t)(¢)=T(f)A(¢)=AT(t)(¢) . (6.1.6)

To decompose the state space, we need the concept of adjoint operator of A.
For this purpose, let C*=C([0, z],R™"), where R™ is the n-dimensional vector
space of row vectors. For a(s)eC”, 0<s<z and (@) € C, —r<0<0, define the
bilinear form of a(s)and p(6) as following

(@ M=)~ [ [[aE-Odn@PB ). (6.1.7)
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Definition 6.1.1 The adjoint operator A" of A is defined in D(A")cC" such
that for all geD(A4) and weD(A"), the following bilinear form holds

(v, A(@)=(4"(¥).$). (6.1.8)

It is straightforward to derive that A" is in the form

—%, se(0, 7],
Ay)= (6.1.9)

[weorn©.  s=o,

and D(A") is densein C".

6.1.1 Spectrum of a Linear Operator

To proceed further, we need the definition of the spectrum of a linear operator de-
fined in a Banach space.

Definition 6.1.2 For a linear operator 4: X — X defined in a Banach space X,
the resolvent set p(A) of A is defined as a set on the complex plane as below

p(A)={A | (AT~ A) has abounded inverse with the domain densein X }.  (6.1.10)

The spectrum of A is the complement of p(A) and is denoted by o (A).
Now, we consider the linear operator A in Eq. (6.1.5), the domain of which is
dense in Banach space C . Then, there is a constant Aep(A) if and only if

(A-ADg=y (6.1.11)

has a solution ¢ in D(A) for every y in a dense set in C, and the solution de-
pends continuously upon . Hence,

P#(O)-Ag(O)=w (), —1<6<0. (6.1.12)

Solving Eq. (6.1.12) gives
$(0)=c*b + j:eﬂﬂ-é)y/(g)dg , b=¢(0). (6.1.13)

It follows that ¢ is in D(A) if and only if geC and
$(0)=L(g) = fi[drl (©)180) - (6.1.14)

Thus, we have
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Ab+y(0)= jo dn (0)[e*%b + jfeﬂw-@y/(g)dg] . (6.1.15)
Define the characteristic matrix 4(1)as
A=A - jiewd;, ©). (6.1.16)
Then, Eq. (6.1.15) gives
A()b=2b- [ e[dn@=-y©O+ [ dy@) [e*eop(&)de1. (6.1.17)

Thus, for each yeC, there exists a unique b if and only if detA4(1)#0. There-
fore, Eq. (6.1.11) has a solution ¢ for every weC if and only if detd(4)=0,
namely, A is not a characteristic root. If detA4(4)=0 holds, Eqs. (6.1.13) and
(6.1.17) imply that there exists a nonzero solution of Eq. (6.1.11) for w=0. This
means that Aeo(A) holds.

The above analysis can be summarized as the following theorem.

Theorem 6.1.1 For the linear operator 4 in Eq. (6.1.5), we have

p(A)={A| detd(A)=0}, o(A)={A| detd(A)=0}. (6.1.18)

Theorem 6.1.1 shows that the spectrum of A is just the same set of characteristic
roots of Eq. (6.1.1). A complex number Aeo(A4) is also called the eigenvalue of
A. For lec(A), the set of all geC satisfying (A-AI)g=0 is called the ei-
genspace.

Definition 6.1.3 The null space N(A—-AI) of A—Al is the set of all geC un-
der (A-AN@=0. For Aec(A), the generalized eigenspace of A, denoted by
M, (A), is the smallest subspace in the state space C containing all geC such
that (A-AI)*@=0 holds for some k=1,2, ....

Because A is a closed operator, the generalized eigenspace of each e (A) is
the same as N(A-AI)* for certain k. In addition, detA(A) is an entire function
in A on the complex plane and hence has roots of finite order. The dimension of
N(A-AI)* is equal to the multiplicity of root A of detA(1). Therefore, the di-
mension of every generalized eigenspace is finite.

The operator A" has similar properties to those of A . For example, we have

Theorem 6.1.2 Aec(A4) if and only if dec(A4).

Theorem 6.1.3 The null space N(A-AI)*, namely the generalized eigenspace
M, (A) for Aec(A), is composed of

k-1 j
¢(9):Z an %'—e“’ , —1<0<0, (6.1.19)
i=t :
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where p=[y, 7, - 7,]" yields A4,y=0 with

by Py Dy
0 )
A DA ol N = '(’1). (6.1.20)
T J
0 0 - p
Similarly, N(A"-AI)* consists of
(=s)k
w(s)= Z,ﬂ , 0<s<r, (6.121)

7 (k- )'

where f=[p, B, --- B.] yields 4, =0.

6.1.2 Decomposition of State Space

The generalized eigenspace M ,(A) is invariant under the operator 4, and T'(¢)
as well. That is, AM,(A4) < M;(A) and T(*)M,;(A) < M,(A), because ¢ in
M, (A) implies that (4-AI)*$#=0 holds for some integer k, and A, as well as
T(t), is commutable with (4A—AZ)*. Denote a set of basis vectors for M,(A) by
¢ .9; 97, and let

D=9 ¢ - 4]] (6.1.22)

Then, there is a dxd matrix B, so that A®,=®,B, since AM,(A) C M,(A).
From the definition of A4, we have

P, (0)=D,(0)exp(B,0), —-1<0<0. (6.1.23)
Thus, for >0 we have

[T()®,1(0)=®, (0)exp(B, (t+8)), -7<6<0. (6.1.24)

Therefore, on the generalized eigenspace corresponding to a Aeo(A4), the func-
tional differential equation (6.1.1) has the same structure as an ordinary differenti-
al equation. Through repeated applications of the above process, we know that if
A={4, 4,4, } is a set of eigenvalues of Eq. (6.1.1), and

@,=[®, & - @], B,=digB, B, .B,], (6.1.25)
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where @, 1is a basis matrix for M, (4), and B, is the matrix defined by
AP, =@, B, ,j=1,2, ..., s, then the only eigenvalue of B, is A;. Moreover,
we have the following theorem.

Theorem 6.1.4 The subspace

P, ={¢ecC | ¢= b for some vectors b } (6.1.26)

is invariant under 4 and T(¢), and there exists an invariant subspace (, such
that

C=P,®Q,. (6.1.27)

Theorem 6.1.4 gives a very clear picture of the solutions of Eq. (6.1.1). In fact,
on generalized eigenspaces, Eq. (6.1.1) behaves essentially as an ordinary differ-
ential equation and the decomposition of space C into two subspaces invariant un-
der A and T(¢) enables one to separate out the dynamics of Eq. (6.1.1) on the ei-
genspaces from the other type of behavior. The above decomposition of C allows
one to introduce a direct sum decomposition that plays the same role as the Jordan
canonical form in ordinary differential equations.

The decomposition of the Banach space C can be completed provided that the
projection operator defined by this decomposition can be explicitly characterized.
For lec(A), let ¥,=[y v] - y,]" and @,= [ ¢, --- §,] be the basis
matrices for M,(A") and M,(A), respectively. Then, the dxd matrix
(¥,.9,)=[(y..#;)] is nonsingular. In addition, it can be normalized as an identity
matrix by properly selecting y; or @,, i=1,2, ..., d such that (¥,,®,)=[6;]
with 6,=1 and &;#0, i#; . Then, for any ¢eC, we have the decomposition

g=¢" +¢%, ¢ =®,(¥,.$)cP,, ¢%=p-¢"c0,, (6.1.28)

where
¥, O=lv..0) W..8) - WP, (6.1.29a)
P=M,(A)= {¢eC] @=®,b for some vector b }, (6.1.29b)
0, = {¢<C| (P .$)=0}. (6.1.29¢)

This decomposition can be extended to the case of multiple eigenvalues. Let
A={A, 1,4}, and let P, be the linear extension of the M, A, j=12,...,s.
We refer to this set as the generalized eigenspace of A associated with A . Simi-
larly, we define P; as the generalized eigenspace of A" associated with A .
Then, we have



196 6 Dimensional Reduction of Nonlinear Delay Systems

Theorem 6.1.5 Assume that @, and ¥, are respectively the basis matrices of
P, and P; such that (¥ ,,®,)=1I . Then, we have P, ={¢eC| ¢=@,b for some
vector b } and Q,={peC| (¥,$)=0 } such that

C=P,®Q,. (6.1.30)
More precisely, for any ¢g<C , we have
p=p" +¢%, @7 =0,(¥,$)cP,, ¢*=¢-¢"€0,. (6.131)

Example 6.1.1 Consider the scalar delay differential equation

T 0
1) == x(t-1)= L[dr](é’)]x(HH), (6.1.32)
where
T
no={ 2 <Ch 0 (6.1.33)
0, 6=1.

We study the dynamics of Eq. (6.1.32) by decomposing its state space.
The bilinear form defined by Eq. (6.1.7) is

W)= v PO~ [ w(E+DpEe. (6.1.34)
and the linear operators A and A" are given by
$(0), Oel-1, 0),
APl(O)= 6.1.35
40O & oy (6.1.350)
2
—l/./(S), SE(O, _l]a
[AyI()= n (6.1.35b)

——w(1), s=0.
2v/() s

Moreover, ¢ is in N(AI-A) if and only if ¢(@)=e*’b, —1<0<0, where b is a
constant and A yields

ﬂ+—;—e_’l =0. (6.1.36)

Also, y falls into N(AI-A") if and only if w(s)=e*c, 0<s<I, where c is a
constant and A yields Eq. (6.1.35).
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It is easy to find that Eq. (6.1.35) has a pair of pure imaginary roots +in/2 and
the remaining roots have negative real parts. Let A={in/2,—in/2}. It becomes
immediately obvious that

D=[¢, 4,] (6.137)

is a set of basis vectors for the generalized eigenspace P=P, of A4 associated
with A, where

4, (9)=sin?, é, (9)=cos%, ~1<6<0, (6.1.38)

and that
¥ =ly, v;I' (6.1.39)

is a basis matrix for the generalized eigenspace P, of A" associated with A,
where

Wf(s):sinl;, l//;(s):cosz;, 0<s<I. (6.1.40)

Noting that the matrix B subject to A@=@ B is in the form

0 =-n/2
B= , (6.1.41)
/2 0
we have
T(t)®=Dexp(Bt). (6.1.42)

Now, we decompose the space C by A. The transformations are simpler if
(W', ®)=[(v;.4,)] is an identity matrix. However, it is not the identity matrix
now. Therefore, we define a new basis matrix ¥ for P, by ¥=(¥",®)'¥", and
then have (¥,®)=1 . The explicit expression for the basis matrix ¥ is

v=ly, v,]". (6.1.43)

where

. WS W TS ns M. TS 1
=2 u(sin—+—cos—), =2u(cos———sin—), u=———(6.1.44
v =2u( 5 2) vy =2p( ) 2) u 1+752/4( )

If we decompose C by A and let 9=0, for simplicity in notation, then any ¢eC
can be written as

g=0"+4°, 4" =®b, b=[b b,]"=(¥,¢), (6.1.45)

where
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b =/mp(0)-sm [ (cos=—Zsin " p(s)ds,

1w s (6.1.46)
b, =2u(0)+ pm f (Eeos™ 1sin™2)g(s)ds.
12 2 2
The explicit expressions for b, and b, can be determined by substituting the ex-
pression for ¥ into Eq. (6.1.35b).
In the subspace P, we have T(¢)g=®Dexp(Bt)b . The elements ¢ and ¢, of
@ serve as a frame of coordinates in P . For any initial value @b in P, we have

T(t+4)®b=T(1)®b , (6.1.47)

since exp[B(t+4)]=exp(Bt). In particular, we have T(4)@b=®b . This implies
that the trajectories of Eq. (6.1.32) in C on P are closed curves. As a result, eve-
rything is clear in space C even though it is quite difficult to visualize the trajec-
tories of Eq. (6.1.32) on the plane of (x,?) .

6.2 Dimensional Reduction for Stiff-soft Systems

This section is devoted to the problem of dimensional reduction for nonlinear de-
lay systems composed of stiff and soft subsystems. We consider again the quarter
car model of active suspension with a time delay in the state feedback as discussed
in Subsection 3.6.1. Regarding to the vertical motion, the vehicle of concern can
be considered as a stiff-soft system, where the soft subsystem is composed of the
vehicle body and the suspension, while the stiff subsystem the tire and the un-
sprung mass. By introducing a proper time scale and a small singular parameter,
the system dynamics can be described by a set of singularly perturbed differential
equations with a time delay. Furthermore, this set of equations can be transformed
into the standard form in critical cases. Then, the center manifold reduction is used
to simplify the equation. The approach enables one to reduce a delayed stiff-soft
system in the infinite dimensional solution space to a low order dynamic system
without time delay, the dimension of which is identical to that of the state space of
soft subsystems. It is essentially a nonlinear method and is more flexible in appli-
cations compared with the direct use of the center manifold reduction.
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6.2.1 A quarter Car Model as a Singularly Perturbed System

As discussed in Subsection 1.1.2, the linearized dynamic equation of a quarter car
model of active suspension reads

{mx (0)+c,[%, (1) —x, (O] +k, [x, (1)—x,()]+g(1) =0,

. T (6.2.1)
m.x, (I)+Cs [‘xt (t)_xb (t)]+ks [xt (t)_xz (t)]+k, [xt (f)—Z(t)]—g(t)=0,

where x, and x, are the vertical displacements of the vehicle body of mass m,
and the unsprung mass m,, k, is the linear stiffness of the tire. The vehicle body
and the unsprung mass are connected through a passive suspension of stiffness £,
and damping c,, as well as a hydraulic actuator capable of generating a control
force g(¢). The control force g(f) yields the linear partial state feedback of vehi-
cle body and includes a time delay 7 owing to the hydraulic actuator as following

g =ux,(t-1)+vx,(t-7). (6.2.2)

The road disturbance denoted by z in Eq. (6.2.1) is the external excitation and

can be set to be zero when the stability analysis is concerned with.
The quarter car model of vehicle suspensions always features that the natural

frequency w,=,/k,/m, of vehicle body with the unsprung mass clamped is much
lower than the natural frequency @, =4/(k,+k,)/m, of the unsprung mass with the
vehicle body clamped. Hence, it is a typical stiff-soft system.

To simplify the analysis, both the time ¢ and the time delay z are substituted
with the dimensionless ones

wtrt->t, 0r->T, (6.2.3)
with help of the following dimensionless parameters
mb k t cx

<1, m=—, k=—L, ¢c= , U
@, m, ks mbks

v

s

£=

=
<
i

, (6.2.9)
mbks

such that Eq. (6.2.1) can be recast into a set of singularly perturbed differential
equations with a time delay
{56(1)=Asox(t)+3soy(t)+Asdx(f —7),

eP(t)= A, x()+ B, y()+ A, x(t-7), (6.2.5)

where the dot represents the derivative with respect to the new time ¢, and

Xy bl X | |x /&
x= = 7|, y= = ! s
X3 Xp Y x, /&
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0 0

01 0 0
ASO E[_l _ } > Bs() = 1 ¢ > Asd El:__u _vj| >
¢ m(1+k) [m(1+k)
(V] 0 ! 0 0
Afo E[m mc}’ Bfos 1- cvm |, Afd E[mu mv] (6.2.6)

In general, a stiff-soft system with delayed control can be described by a set of
singularly perturbed differential equations with time delays if a small singular
parameter is properly chosen. For simplicity, the attention in this section is paid to
the following form of delay differential equations

{X.,'(l‘)=f(X(t),y(t),X(t—T),y(t—‘[)),

) (6.2.7)
ey(t)=g(x(t),y(),x(t-1),y(t-71)),

where O<e<<l, f,geC?, p21, f(0,0,0,00=0, £(0,0,0,0)=0, xeR"
and yeR" are the state vectors of soft subsystem and stiff subsystem, respectively.

In the next two subsections, an outline of the center manifold reduction is given
first for the general functional differential equations in critical cases. Then, the
center manifold reduction is presented for the singularly perturbed differential
equation with a time delay.

6.2.2 Center Manifold Reduction in Critical Cases

Similar to the study in Section 6.1, a nonlinear differential equation with a time
delay 7 can be written as a functional differential equation

x(t)=L(x,)+N(x,), xeR", >0, 6.2.8)

where x,(0)=x(t+0) for -7<6<0, L(x,) and N(x,) represent the linear and
nonlinear parts, respectively. Equation (6.2.8) is not in the standard form of a state
equation, so the decomposition C=P,®Q, in Theorem 6.1.5 for the Banach
space C can not be directly used to the system reduction. To solve this problem,
Eq. (6.2.8) is converted into the following differential equation of operators

%,=A(x,)+0-N(x,), (6.2.9)

where
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d¢ _
Ag@)=a0" O
L(¢)’ 6:()’
@(9)5{2’ Zi[o_” 0. (6.2.10)

If the adjoint operator of L is denoted by L', the adjoint operator 4" of A4 reads

. ——(—lﬂ, se(0, 7],
A (y(s)={ ds

L'(y), s=0.

(6.2.11)

Let A={A|detA(1)=0,Re1=0}, where A(A) is the characteristic matrix de-
fined in Eq. (6.1.16). Assume that A has m (finite) elements, then the Banach
space C can be decomposed by A as C=P®Q, where P and Q are two invari-
ant subspaces of C under 4 and T(¢) . The subspace P is an m-dimensional sub-
space spanned by the eigenvectors associated with all 4 in A . As done in Section
6.1, let d=[@ @, --- #,,] be a basis matrix for P, ¥Y=[w| w; --- w}]" be a basis
matrix for the dual space P* of P in C", subject to (¥, ®)=[(y; $.)]=1 . Then,
for each 7, x, can be decomposed as x,=@u+v with ucR” and ve( . Let ma-
trix E be the solution of matrix equation d=®E , direct computation shows, see
(Faria and Magalhaes 1995), that # and v are governed by the following ordi-
nary differential equations

{il:Eu+7’(O)N(¢u+v), (6.2.12)

v=Av+ON(@u+v)-DO¥Y(0)N(Du+v).

Here the operator A4 in the second equation of Eq. (6.2.12) is in fact the restriction
of A on the subspace Q.

The center manifold theorem in (Hale 1971) states that there exists an m-
dimensional center manifold of Eq. (6.2.8) given by

M,={¢C | p=0u+v} (6.2.13)

for some v=h(u)eQ with x in a neighborhood of the origin of R". The flow on
the center manifold is given by x,=®u+v. The function A can be determined
from

A(h(u))+O N(Du-+h(u))-O¥ (0)N(Pu+h(u))

=Dh(u)[ E u+¥ (0)N(@u-+h(u))], (6.2.14)
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where Dh(u) is the Jacobian of h(u) with respect to u. More explicitly we have

%h(u)—diY’(O)N(¢u+h("))

(6.2.152)
=Dh(u) E u+¥ (0)N(Pu-+h(u))]
for #e[-7, 0) and the following boundary condition
[L(h())+ N (Du-+h(u))- ¥ O)N (Bu+h(u)] ., (6.2.15b)

=Dh(u) E u+¥ ()N (Pu+h(u))] o,

Thus, it is necessary to solve a series of boundary value problems in order to find
out the elements of vector function h since L(¢) and N(@) are in terms of ¢(0)
and @(-7). Compared with the case of ordinary differential equations, it is more
difficult to obtain an explicit series approximation of v=h(u) in terms of u.

Once the vector function A is found, the dominant dynamics of the original
system in a neighborhood of the origin of R" is governed by the first equation in
Eq. (6.2.12).

6.2.3 Reduction for Singularly Perturbed Differential Equations

By introducing a fast time 77=¢/¢ and the corresponding time delay r=7/¢, and
denoting x(e77) and y(en) by x(n) and y(7) respectively, Eq. (6.2.5) can be
recast as

{x'(n)=e S x(m),y(m),x(n—r),y(11-1)), (6.2.16)

' (m)=g(x(m),y(m),x(m-r),y(n-r)),

where the prime represents the derivative with respect to the fast time 7. Ac-
cording to £(0,0,0,0)=0, g(x(n7),y(n),x(n—r),y(n—r)) can be written as

8=Ay Xx(N)+ Ay y(1)+ By X(n-r)+ By y(-r)+h.o.t. (6.2.17)
Let z=[x" ¢ y"]"eR™" and z,(0)=2(n+6) for —-r<f<0. Denote by
C=C([-r, 0],R™"*") the Banach space of continuous functions mapping [-~, 0]

into R™"*! with the previously defined norm. Then, Eq. (6.2.16) can be written in
the form of differential equation of operators

7, =L(z,)+N(z,), (6.2.18)

where
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000 000
L(¢)=[ 4, 0 AJ«#(O){ B, 0 322}¢(—r)EL1(¢(0))+L2(¢(—r)),

8] 8020 [ b1
R (0) V2T Y AN S § I A R
4,.(0) ¢'"”“(8) 6] | Bara (1) [ ]w)}
3O ][ 620 [ 4] Bz (1) N.@)]’
G( : | : A : A : )
6,0 | | 80110 | [ 80| | B (=)

N(#)=

(6.2.19)

with N,eR™" and N,eR’.

In practice, it is almost impossible for an engineering system to be neutrally
stable. Thus, it is very natural to assume that the dynamic equation of the stiff sub-
system has no characteristic roots with zero real parts when the inertial of soft
subsystem is clamped. That is, the free vibration of the stiff subsystem with the
soft subsystem clamped either converges or diverges with an increase of time.
Mathematically speaking, the characteristic equation

det(AI-A,,—B,,e*")=0 (6.2.20)

is assumed to have no pure imaginary roots. Then, Eq. (6.2.16) has m+1 repeated
zero characteristic roots and the remaining characteristic roots do not have zero
real parts. This fact enables one to use the center manifold theorem.

In this case, the matrix function #(€) in Eq. (6.1.1) takes the form, see (Qin et
al. 1989) and (Stépan 1989),

-L,, O=-r,
7(6)=40, 0e(-r, 0), (6.2.21)
L] s =0,

and the bilinear form defined in Eq. (6.1.7) reads
0
(v.8)=y(0)g(0)+ L w(s+r)L,@(s)ds. (6.2.22)

Let C=P@®Q be the decomposition by the m+1 repeated zero eigenvalue of the
state space C=C([-r, 0],R™"") . Then, it is necessary to find out a basis matrix
dyforPrandrasbasisimatrixy¥uforpP psatisfying (¥, ®)=1 .
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It is easy to show that the generalized eigenspace corresponding to zero eigen-
values coincides with the corresponding eigenspace. In fact, the characteristic ma-
trix is in the form A(A)=AI—-L,—L,e™*" . As shown in (Diekmann et al. 1995), a
vector set [a,, a, -+, @;_;] is a Jordan chain of 4(4) at A,=0 if and only if
a,#0 and

AW, +H(A-Ay)a, ++(A-1,) "a, J=0((A-2,)"). (6.2.23)

There follows immediately k£=1. That is, the subspace P is composed of the ei-
genvectors associated with m+1 repeated zero eigenvalues of A.
Each eigenvector z of A corresponding to A =0 yields

g—2=o and L, (z(0))+ L,(z(~))=0. (6.2.24)
Hence, z is a constant vector. Let z=[z, -+ z,, -*- 2., 1", then (L,+L,)z=0
gives
Z Zme2
(A +B,)| ¢ |[+(An+By) 1 |=0. (6.2.25)
Zm Zm+1+]

Because A=0 is not a root of Eq. (6.2.20), A,, +B,, is invertible and hence

Zm+2 Z1
=—(Ap +By, )_1 (Ay+By) & |- (6.2.26)
Z i+l Zm
When the vector [z, --- z,]" is taken as the standard unit vectors in R™ respec-

tively, the rest entries in vector z can be determined. Therefore, the basis matrix
@ canbe chosenas #=[I &/]".

Similarly, the eigenvector z in C* of A" corresponding to the eigenvalue
A=0 satisfies dz/d#=0 and L,"(2(0))+L," (z(r))=0. That is, the sub-vector of
7 yields (Ay+Byn) [z * Zpus] =0. There follows [z,,; ** Zpusi]=0
since the matrix A,,+B,, is invertible. Thus, ¥=[I 0] yields (¥, ®)=1I.

Let z,e€ C=P®Q, then we have z,=@u+v with u=[u, u, - u,,]"eP and
v=[v, v, * Vpul' €0 . Thus, we can convert Eq. (6.2.12) into

{i;=N [(Pu+v), (6.2.27)

v=Av+0-N(Pu+v)—®-N,(Pu+v),
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where the dot represents the derivative with respect to the fast time 7. Noting that
the (m+1)-th entry is zero in the vector N,(®Pu+v), which is equal to
Y(O)N(Pu+v), we have du,,,/dn=0 and dv,,,/dn=0. Because £=u,,,+v,.,,
it is natural to set u,,,,=¢ and v,,,=0. Thus, in terms of the original time scale,
the dominant dynamics of the Eq. (6.2.16) yields

. U, U

U : :
=f(@ " |+h( ")), (6.2.28)
. um um

um

according to the center manifold theorem. Here f(x,y,x(n—r),y(n—r)) is denot-
edby f(z,) for simplicity.

Compared with the direct use of the center manifold reduction in the analysis
on the Hopf bifurcation of delay differential equations, see (Hale 1977) and
(Stépan 1989), this approach is more flexible to the high dimensional dynamic
systems with time delays. Here, it is not necessary to check whether the original
system of high dimensions has finite number of characteristic roots with zero real
parts and all remaining characteristic roots have nonzero real parts. Instead, it is
sufficient to check whether the stiff subsystem has no characteristic roots with ze-
ro real parts. In addition, the computational cost is lower because the two basis
matrices @ and ¥ are independent of @ in the present case. The approach is also
applicable to the stability analysis of linear delay systems as seen in the next sec-
tion, since it works for various problems of local dynamics.

6.3 Stability Analysis of an Active Suspension

This section presents an application of the dimensional reduction in Section 6.2 to
the quarter car model with active suspension described by Eq. (6.2.5). The objec-
tive is to find the conditions that render the system asymptotically stable. As a
special case, the stability of an undamped quarter car model with active suspen-
sion was studied in (Palkovics and Venhovens 1992) by using the method of D-
subdivision. A detailed analysis has been made in Subsection 3.6.1 on the delay-
independent stability of a type of damped quarter car models with active suspen-
sion by using the generalized Sturm theory. For a given time delay, however, no
analytical results are available for the stability analysis of this system with respect
to any system parameters. Now, the approach presented in previous sections is
used to analyze the stability of this system.
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6.3.1 Center Manifold Reduction

To study the stability of Eq. (6.2.5), we first introduce a fast time scale n=t/¢
and corresponding time delay r=7/&, and transform Eq. (6.2.5) into a set of de-
lay differential equations in terms of the fast time scale

x'(17)= e[ Ao x(1)+ B, y(m)+ A, x(n—r)],
£'(m=0, (6.3.1)
Y (m)=Aox()+B o y(m)+ A4, x(n-r),

where the prime represents the derivative with respect to the fast time scale 7. In
the state space C([—r, 0],R*) with the notations used in Section 6.1, we have

Lo 00 0 000 o [mtu) mctv) 0
"14,, 0 B,|” ? |4, 0 0] 0 0 0

#,(0) #,(0) #(-r)
N,(§)= ¢3(O)(AS°{¢2(0)}+BS°[¢S(O)}MS"’{@(_@}) , N,(¢)=0.(63.2)
0

To investigate the local dynamics of the quarter car model with active suspen-
sion on the center manifold, it is necessary to make an approximation to the func-
tion v=h(u) determined by the center manifold theorem. This work can be com-
pleted with help of a polynomial approximation h(#)~Y,, ;.. sk (@)ujujus . For
the stability analysis of the trivial solution, it is sufficient to assume the form of

h(u) as following
h(uw)~[h,,(O)u;+h,, (9)u§ Ju, +[hy, (B)u; +hy (0)”32 Ju,

s it (6.3.3)
=[h, (O)e+hy,(0)e" Ju, + [y, (O)e+hy, (O)e ™ Ju,,
where
—_r11! 2 4
h, (0)=[h;(0) h;(0) 0 h;(0) h; on'. (63.4)
Then, we arrive at the dynamic equation on the center manifold
u, (@) Uy )03 Yoty +(ly +a 03 +a 13
ity |=tt| (Byy byt byl Yu, +(byy +by ey +byil Yu, =N, (6.3.5)
U, 0

where the coefficients a, and b, are determined as follows
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k(1+u) b = k(c+v)

b, = ,
10 1k 20 14k

B

Ay =1, a,; zhijz' 0y,

b, =—h,(0)—uh, (-r)~ch; (0)—vh; (-r)

Y

B0 chj(0) (6.3.6)

1 . . Lj=12.
m(1+k)  fm(1+k)

6.3.2 Computation of the Approximated Center Manifold

In what follows, attention is paid to determining the functions Aj(#) in Eq.
(6.3.3), which are characterized by a series of boundary value problems in Eq.
(6.2.15).

With help of MAPLE, we can readily obtain the following ordinary differential
equations and the corresponding boundary conditions by separating the coeffi-
cients of the terms wu;, u,u} in Egs. (6.2.15a) and (6.2.15b). After some neces-
sary substitutions, the boundary problems are converted into the following initial
problems

d d
E_éh‘ll (6)=0, @hzl,(e):l ,

1\ (0)=0, 5y, (0)=0; (6.3.72)

d d
—&thl (9)=b10 > a—9‘h221 (9)=b20 )
B (0)=0, £ (0)=0; (6.3.7b)

d d
H‘éhllz (0)=b,, h;| @+ h121 ), @héz (9)=b20 h;l (9)‘*’/”1]1 (0)+h221 0,

hy(0)=0, hy,(0)=0; (6.3.7¢)

d d
Eghlzz (9)=b10h221 @)+b,,, d_ghzzz (9):b20h22| (0)+h121 (0)+b,,,

hp(0)=0, h3,(0)=0; (6.3.7d)

2
_mk(1+u)(c+v) , ih; (9)=m(1+u)-nlk(c+v)
I+k déo 1+k

B

d
Eh]“l (0) =
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0 <0>=(1+u)[”;’i” ket

J+k)

4 mkv(c+v)r c(1+u)«/; ck(c+v)2\/;1T
hy (0)= ' ;

mur+ ; (6.3.7¢)
1+k Vi+k JA+k)
d d
-a_é_hlsl (©)=0, @hgl (@)=0,
K’ (0):—% K (0)=mk(c+v) 2 +m(+u).  (63.7D)
+

Though the differential equations for A%(8), hh(6), h,(8), and h3,(0) are
simple, for example,

%h;‘2 (0)=b,,hy, (0)+m(1+u)h} (0)+b, m(c+v),

d

252 O)=baha O+, (O)+m(1+u)hy, (0)+bym(c+v),  (63.7g)
d d

@hlsz (0)=b\sh3,(0), Eh; (0)=b,oh3,(0)+;,(6), (6.3.7h)

the expressions of A5(0), #5,(0), A5(0), and 45,(0) are somewhat lengthy as
follows.

s (0) _ chrm’ [Gvk(c+v)—u(l+h)]
1+u J+k)’

A mk* {3’ —u+cv)r’ +2[1+u—(c+v)*1}
' 2(1+k)?

mc?[2(c+v)? —(1+u)]+(1+u)(A-c*m)—ur?
(1+k)° ’

+mk

chrlm® [Bhv(c+v)? —2(14 k) (v+cu+2uv)]
J(A+k)

2,2 (ver +4v2 +3v%) 5 cu+duv+v
2(1+k)? 2(1+k)

hy, (0)=

+mk
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ke c+3v o 5 (2=3v +2u)c+2v—v +2uv
(1+k)* (1+k)?

(2 —3mc?)(1+u)(c+v)
(1+k)*

+

ke 5 262 +6¢2v+60v +20°
(1+k)°*

, (6.3.7¢)

15 (0) _ mhr[u(Lek)~2vk(c+v)] 2ck*Nm’ (c+v)’ _ckm® (1+u)

L+u (1+k)? Jaos Ja+k)

frAlm? [2vk(c+v)? —(1+k) v+ 2cu+3uv)]
(1+k)?

h3,(0)=

20k m’ [(> +V*)+3ev(c+v)]  3cknlm’ (1+u)(c+v)

J(+k)® | VJ(A+k)’

It is now an easy task to obtain the functions h,-f (0) . For example, we can readily
write out

. (6.3.7h")

b,,6*
h111(9)=07 hllz(g)=%a

2
BOb0, B @)=b6+200

b,,8”
hy(0)=0, hyy(0)= 202 ,

(byg +5)0”

B3 (0)=by0, h}(0)=b, 0+ (6.3.8)

In terms of the original time scale ¢, Eq. (6.3.5) is now in the form

s L t (6.3.9)
U, (byo +by,8+b1y& Juy +(byy +by £+byy 67 u,

where all the coefficients are in terms of the system parameters.
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6.3.3 Stability Analysis

As proved in (Hale 1971), if the trivial solution u=0 of the first equation in Eq.
(6.2.12) is asymptotically stable (or unstable), so is the trivial solution x=0 of
Eq. (6.2.9). From the above analysis, it is easy to see that the trivial solution of Eq.
(6.2.1) is asymptotically stable if the zero solution of the reduced Eq. (6.3.9) is as-
ymptotically stable. From the Routh-Hurwitz criterion, the trivial solution of Eq.
(6.2.1) is asymptotically stable if

byy+b,,e+b,62 <0 and b,,+b,e+b,e”<0. (6.3.10)

On the other hand, if the characteristic function of Eq. (6.2.1) is denoted as D(A4),
D(0)=p(1+u) holds for a positive number p, and D(+wo)—>+co. Thus, if
I1+u<0, D(A) has a non-negative root, which renders the system unstable.
Therefore, the inequality 1+u >0 should hold true if the system is asymptotically
stable. Note from the expressions #;(0) and b; in Egs. (6.3.6) and (6.3.7) that
there is a common factor 1+u in the term of b,,+b,,6+b,,&> because

. hﬁl(o) N c'hlsl(())

"TnAER) fm(ek) 6310

b __bur? b byobyr’ h5(0) | chp(0)
2 v(b,r )4 . .
2 2 m(1+k)  m(1+k)

Thus, the factor 1+u can be dropped from the stability conditions in Eq. (6.3.10).
To demonstrate the effectiveness of the dimensional reduction, a comparison is

by, =by,v

made for the asymptotically stable regions determined by using this approach and
the method of D-subdivision on the plane of (u,v) for the following parameters

m,=290kg, m,=59kg, k,=16,812N/m, k,=190,000N/m,
¢,=0~980Ns/m, 7=0~04s, (6.3.12)
or equivalently for the following dimensionless parameters
m=49153, k=11.301, ¢=0~0.4453, r=0~0.1699. (6.3.13)
Given the combination of dimensionless feedback gains

(u,v)€[-0.95, 0.95]x[-0.95, 0.95], (6.3.14)

we look at the following four case studies: (a) ¢=0.05 and r=0.01; (b) ¢=0.05
and =0.05; (c) ¢=0.25 and r=0.08 ; (d) ¢=0.30 and r=0.10.
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As shown in Fig. 6.3.1 the asymptotically stable regions determined by using
the approach of dimensional reduction are in good agreement with those obtained
by using the method of D-subdivision.

0.95 a 0.95 b.
0.5} Stable region 0.5+ Stable region
v 0.0¢ voo oo
050 —— D-Subdivision 05 —~——— D-Subdivision
----- Reduction - - --- Reduction
-0.95 . y n -0.95 L ! -
-095 -0.5 0.0 0.5 0.95 -095 -0.5 0.0 0.5 0.95
u u
0.95 0.95
C. d.
0.5 Stable region 0.5¢ Stable region
v 0.0} v 0.0t
.05 ~—— D-Subdivision osTTTT ——— D-Subdivision
----- Reduction —_—-.Reduction
-0.9: . : n -0.9 . —p—
-095 .05 0.0 0.5 0.95 -095 0.5 0.0 0.5 0.95

U

u

Fig. 6.3.1. Asymptotically stable region on the plane of (u,v); a. ¢=0.05 and r=0.01, b.
¢=0.05 and r=0.05,¢. ¢=0.25and »=0.08,d. ¢=0.3 and »=0.10

Another application of the approach of dimensional reduction is to the local bi-
furcation analysis. The approach, possibly combined with the computational tech-
niques for the normal form, see (Faria and Magalhaes 1995), enables one to com-
plete the local bifurcation analysis of the stiff-soft systems with a time delay in a
way similar to the case of the ordinary differential equations.

Even though many practical systems exhibit the behavior consistent with sin-
gularly perturbed differential equations, most of them are not in the standard form
of singularly perturbed differential equations. For those systems, it is very impor-
tant to have a proper physical insight when the singular parameters and transfor-
mations are chosen. It is still an open problem whether any heuristic ideas could
be followed for choosing the proper small parameters and transformations when
the physical insight is not obvious.
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The study on nonlinear delayed dynamic systems is a tough problem. Only a few
theoretical results have been available for those that can model engineering sys-
tems. Among the available results, the existence and determination of periodic
motions of nonlinear delayed dynamic systems have drawn great attention.

In theory, the existence of periodic motions can be studied by using the fixed-
point theorems and the Lyapunov methods, see, for example, (Hale 1977) and (Li
and Wen 1987). A very skilful approach proposed by (Kaplan and Yorke 1974)
has been developed over the past two decades to construct the periodic solutions
of delay differential equations via a sort of ordinary differential equations, see
(Liu and Li 1996). These studies, however, are still limited to very simple delay
differential equations. In practice, the periodic motions have to be determined by
using approximate techniques, such as the Poincaré-Lindstedt approach in (Casal
and Freeman 1980), the method of harmonic balancing in (McDonald 1995), and
the method of multiple scales in (Hu et al. 1998a).

Physically speaking, there are two important causes for the emergence of a
periodic motion if the system is nonlinear. One is the well-known Hopf bifurca-
tion at the equilibrium of an autonomous system, and the other is the either exter-
nal or parametric periodic excitation in a non-autonomous system. This chapter
will discuss the periodic motions of nonlinear delayed dynamic systems owing to
these two sources respectively.

7.1 The Hopf Bifurcation of Autonomous Systems

As well known in the case of ordinary differential equations, one of the simplest
ways in which a non-constant periodic solution emerges is through the Hopf bifur-
cation. This occurs when, as a real parameter ¢ in the equation is passing through
a critical value o, a pair of conjugate eigenvalues of the linear operator (namely
a pair of conjugate characteristic roots of the characteristic quasi-polynomial) is
crossing the imaginary axision'complex plane from the left to the right. Generally
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speaking, the theorem of Hopf bifurcation assumes only the local existence of
periodic solutions when they arise. This case will be discussed later.

To undergo a Hopf bifurcation, the dynamic system governed by a set of ordi-
nary differential equations must be at least two-dimensional. However, a first or-
der delay differential equation with a single time delay may undergo the Hopf bi-
furcation or more complicated bifurcations such as the Hopf-Hopf bifurcation, and
even exhibits chaotic behaviour. For a single-degree-of-freedom system with de-
layed feedback control, it does undergo complicated bifurcations, see, for exam-
ple, (Shayer and Campbell 2000) and the references therein.

The theorem of Hopf bifurcations enables one to obtain the local existence of a
periodic solution. To establish the global existence, it is often to resort to some
kind of fixed point theorems associated with the mapping 4 defined in a cone
shaped subset K in the state space C . Here, the cone K plays the role of the
Poincaré section and the mapping A is usually similar to the Poincaré mapping
for ordinary differential equations. A comprehensive description of this method is
beyond the scope of this book. It is referred to (Hale 1977), (Kuang 1993) and
(Hale and Lunel 1993).

7.1.1 Theory of the Hopf Bifurcations

As proved in (Hale 1977) or (Hale and Lunel 1993), a general theory is available
for the Hopf bifurcation of delay differential equations. The theory is presented
hereinafter for a one-parameter family of nonlinear delay differential equations

x()=f(a.x,), (7.1.1)

where x,(0)=x(¢t+0) is defined for O€[-7, 0], f(a.¢) has the continuous first
and second derivatives with respect to a and ¢ for aeR and ¢cC([-7, 0),R"),
where C=C([-7, 0),R") is equipped with the norm ||@]|. =supsq .o [#(0)| as be-
fore. Assume that f(e,0)=0 holds for all @eR. That is, the system has a fixed
trivial solution x=0 for all values of « . Furthermore, define a linear operator

L,: RxC—R" with parameter a by
La¢:D¢f(a9o)¢’ (712)

where D, f(,0) is the Jacobian of f(a,$) with respect to ¢ at $=0 and can be
expressed by L, ¢=["[dn(6)]p(0) for some bounded variation matrix function
n . In addition, define



7.1 The Hopf Bifurcation of Autonomous Systems 215

N, ¢=f(c.9)-L,¢, (7.1.3)

for the nonlinear part of the right-hand side of Eq. (7.1.1) and assume that
IV =o(lgll.) as gl 0.

Suppose that the characteristic root A(«) of L, has a continuous derivative
A'(a) with respect to « . Given a specific value «,, say, a,=0 without loss of
generality, of «, the trivial solution x=0 is asymptotically stable for «, if all the
eigenvalues of L, have negative real parts. If there exist any eigenvalues with
positive real roots, then the trivial solution x=0 is unstable.

In what follows, the trivial solution x=0 of Eq. (7.1.1) is assumed to undergo
an instability when the parameter « increases and arrives at «,=0. That is, a pair
of conjugate complex eigenvalues of L, goes from the open left half-plane into
the open right half-plane as @ increases and passes through «, . After such a tran-
sition, an arbitrary small disturbance near the trivial solution may evolve into an
oscillatory solution.

More precisely, a theorem is presented on the basis of following two assump-
tions.

(H1) For a small «, the linear operator L, has a pair of simple conjugate
imaginary eigenvalues y(a)xiw(a), which yields

7(0)=0, @,=w(0)=0, (7.1.4)
and L, has no other pure imaginary eigenvalues which are multiples of iw, .

(H2) The pair of conjugate eigenvalues is crossing the imaginary axis at =0,

namely

7'(0)=0. (7.1.5)

Theorem 7.1.1. Suppose that f(a,$) has the first two continuous derivatives
with respect to & and ¢, and F(«,0)=0 holds for all <R . In addition, assume
that the hypotheses (H1) and (H2) are true. Then there are constants &,>0, a,>0,
0,>0, continuously differentiable functions a(&)eR, @(E)eR, and an
(&)~ periodic function x*(&) in & for [E]. <&, such that

x(&)=x,(&) + x,(&)% (7.1.6)

is a solution of Eq. (7.1.1) with the following decompositions

x, (&)=, y" (&), x5(&)%=z7,(&), (7.1.6b)
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where y"(€)=,0)" +o(E|.) and z5(¢)=0(E|,) as [¢[.—0. Furthermore, for
Ell.<& and |o—(2n/w,)|<8,, every w- periodic solution of Eq. (7.1.1) with
[l%.||- <8 must be of this type except for a translation in phase.

Similar to the theory of the Hopf bifurcations of ordinary differential equations,
Theorem 7.7.1 indicates two important points. One is that the existence of the
Hopf bifurcation is governed by the properties of the eigenvalues of the linear op-
erator. The other is that the asymptotic behaviour of the non-constant bifurcating
periodic solution is dominated by its projection on the center manifold of original
system.

Example 7.1.1 Consider the Hopf bifurcation of a nonlinear delayed system,
the characteristic function of the linearlized system of which reads

D(A,7)=P(A)+0(L)e™, (7.1.7)

where P(A)and Q(A) are two polynomials in A, with degP(1)=n>degQ(1).
Now, we look for the necessary condition of the Hopf bifurcation when the time
delay 7 is taken as the bifurcation parameter.

As discussed in Subsection 3.5.1, F(@)=|P(iw)|’ -|Q(i®)]’ is a 2n-th order
polynomial in @ and contains only the terms of even orders. If D(A1,0) is Hur-
witz stable and F(w) has a unique pair of simple real roots *w,, we can deter-

mine the minimal time delay =7, from

Or(@0) P, (0y)— P (@,)Q, (@)

inew,r= > (7.1.8a)

e 0 @)+ 0, (@) !

COSw, 7= Py (wo)Q;z(wO)+Q12(w0)PI (@,) . (7.1.8b)
0.2 (@) 40, (@,)

In the case of F'(w,)#0, the nonlinear system of concern undergoes a Hopf bi-
furcation at r=7, due to the following two facts. First, all the characteristic roots
of the quasi-polynomial D(A,7) stay on the open left half-plane for 0<r<rz,.
Second, the characteristic function D(A,7,) has a pair of conjugate pure imagi-
nary roots A,,=+i®, and the condition dRe(4,,)/dr#0 holds at r=r, since
Theorem 3.5.2 states that sgn[dRe(/le)/drl J=sgn[F'(w,)]. If F(w) has two
or more than two pairs of simple real roots, the system may undergo more compli-

=79

cated bifurcation.

For example, the four-wheel-steering vehicle discussed in Subsection 3.6.2 un-
dergoes. the Hopf bifurcation in the vicinity of the origin of the phase space when
the parameter pair (L, U) falls into the given region
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A={(L,U)[ 10<L<120, 5<U <40} , (7.1.9)

since there is a proper value of time delay for each pair (L, U) so that the two con-
ditions of the Hopf bifurcation hold true, and the corresponding polynomial F(w)
has exactly one pair of real roots +w at such values of parameters.

To make a detailed analysis on the dynamics of delay differential equations on
the center manifold, a similar procedure can be followed as done for ordinary dif-
ferential equations. In the next subsection, attention will be paid to the decompo-
sition of the bifurcating solution, though it has been presented in Section 6.1 in
terms of real functions.

7.1.2 Decomposition of Bifurcating Solution

Suppose that Eq. (7.1.1) undergoes the Hopf bifurcation at r=r,. More precisely,
let @=r-7, be the bifurcation parameter and assume that a pair of conjugate sim-
ple eigenvalues A(a) and A(a) of the linearized equation at x=0 is crossing the
imaginary axis as « passes through zero, and no other eigenvalues stay on the
imaginary axis.

Following Section 6.1, it is possible to decompose the system dynamics near
the Hopf bifurcation into two parts. One governs the system dynamics on the cen-
ter manifold, and the other is the complementary part, which plays a less impor-
tant role in understanding system dynamics. Now we present the decomposition
procedure in a more direct way. In fact, we can recast Eq. (7.1.1) as

x()=L,x,+N,(x,), (7.1.10)
or equivalently
%,=A,(x,)+ON (x,), (7.1.11)
where
AP(0)= %’ oet0) @(9)5{2’ Zf[o"r’ O (71120
L,(¢). 6=0, T

In the sense of (A,y,8)=(w,A4,4) , the adjoint operator A, of A reads

_j_'/” se(0, 7],
A wis)={ °° (7.1.12b)

Lw= [ yt-01dn(0), s=0,
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where the bilinear form is given as following
W) =080 [ ['w&-001an0)1p©). (71.13)

Assume that ¢ and ¢ are the eigenvectors of 4, and A, corresponding to
A(a) so that

&, OH-1=(", )=0, (7.1.14)

where { represents the complex conjugate of ¢ . As the real solutions of Eq.
(7.1.10) are of concern, we decompose the bifurcating solution x, into a real-
valued summation

x,=a()¢+a@é+v(), (£, v)=0. (7.1.15)

Then, we have
[a-A(a)all +Ha-A(a)all +‘;—‘t’=Aav+@Na (a()¢+a@®é+v(r)) . (7.1.16)

From Eq. (7.1.14) and

(c‘%)%((‘,v):o, (&AM =(AL ¥)= M@ )=0, (1.1.17)

we have
a-Ma)a=(¢", ON (al+al +v))=¢ N, (al+al+v)|,, , (7.1.18a)

as well as a similar equation for @ , and

ﬂ:AaH[@Na (@a()E+a)e +v(t)
dt (7.1.18b)

~(¢'N @+ 9|50~ N, (@l +aC +9)] 5]

When the linearized equation of Eq. (7.1.11) at x=0 has a pair of complex-
conjugate simple eigenvalues A(e) and A(a) while a passing through zero, and
all the other eigenvalues remain on the open left-half complex plane, we can prove
that |[v|, >0 as r—+w . Thus, the complementary part v(r) plays a simple role
in the local dynamics analysis.
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7.1.3 Bifurcating Solutions in Normal Form

In a neighbourhood of the origin of R", there exists v=g(a,a,a) for Eq. (7.1.18)
according to the center manifold theorem. Once the function g(a,a,a) is found,
the delay differential equation can be transformed into a planar differential equa-
tion free of time delays. This reduction enables one to determine the direction of
the Hopf bifurcation, namely, to answer whether the bifurcating periodic solution
exists locally for a>a,=0 (supercritical Hopf bifurcation) or a<a, (subcritical
Hopf bifurcation), as well as the stability of the bifurcating solutions. The problem
is that it is difficult to determine the center manifold in general. As discussed in
Section 6.3, a series of boundary problems of ordinary differential equations have
to be solved first so as to achieve the expression of the flow on the center mani-
fold, and then the normal form of the reduced system has to be calculated. Hence,
a lot of computational efforts are required in this procedure. In (Faria and Magal-
haes 1995), however, a method was proposed for the reduced differential equation
on the center manifold in the normal form without computing the manifold. A
similar method to estimate the direction of Hopf bifurcation was presented in
(Stech 1985) by using the Lyapunov-Schmidt reduction.

Following the work in (Faria and Magalhaes 1995), we have the reduced ordi-
nary differential equation on the center manifold in the polar coordinates (p, &)

2p+l 2p+2

p=ay' ) p+K,p’ +-+K,,p ),

E=—w+0(a,p)).

+0(ap|(p,a)|+|(P’“) (7.1.19)

a,p

Because »'(0)#0 holds, the sign of constant K=K, governs the direction of the
Hopf bifurcation. If »'(0)>0, the condition K>0 corresponds to a subcritical bi-
furcation and K <0 to a supercritical bifurcation. For a scalar delay differential
equation in C([-7, 0],R) in the form of Eq. (7.1.1), (Faria and Magalhaes 1995)
gave the expression for K as following

1 (B B(I,I,O,O)B(I,O,I,O) { B(Z,O,O,O)B(O,I,O,l)
I—LO (gem)O) (2,1,,0,0) L() (1) 2i(0—L0 (eZia)B)

K=Re[ ), (7.1.20)

where the constants B, ), B(1100, and so on are the coefficients in the follow-
ing expansion
F0,x,e" +x,e™ +x,1+x,e5%)
. 2
=B, 0,00%i +B1.0.0%1 %, +B 01.00%1% T B 0% %, (7.1.21)

2
+B100)%1 Xyt
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If K#0, the periodic solution, bifurcating from the origin p=0 at a=0, of the
delay differential equation reads

7' (O
=1/—— 0
pe) x 0@ (7.1.22)

&0)=—w1+0(lo)).

For the non-constant periodic solution of Eq. (7.1.1), main results are as follows.

Theorem 7.1.2 Assume that the hypotheses (H1) and (H2) are true for Eq.
(7.1.1). If y'(0)K<0 (or '(0)K>0), a unique non-trivial periodic solution exists
in the neighbourhood of p=0 for >0 (or a<0), and no non-trivial periodic
solution exists for a<0 (or a>0). The corresponding non-trivial periodic solu-
tion is asymptotically stable if K<0 and unstable if K>0.

If X=0, the normal form has to be calculated up to the first non-vanishing co-
efficients K, in order to study the system dynamics.

In the following example, an outline for the Hopf bifurcation of a delay differ-
ential equation is given to demonstrate the above process. For detailed analysis, it
is referred to (Hale and Lunel 1993) and (Faria and Magalhaes 1995).

Example 7.1.2 Study the Hopf bifurcation and the corresponding periodic so-
lution of the well-known Wright equation

w(t)=ax(t-D[1+x(1)], xeR, (7.1.23)

at x=0 with the variation of parameter a.

The characteristic quasi-polynomial A—ae™*

of the linearized delay differential
equation has a pair of simple imaginary roots *iw if and only if a=a, and

w=wm, with
a,=(-)""w,, a)k=§+kn for k=0,1,2,-- (7.1.24)

The implicit function theorem indicates that the characteristic quasi-polynomial
has a unique pair of conjugate complex roots A(a)and A(a) close to iw, and
—-iw, for a in the neighbourhood of a, and that for A(a)=y(a)*iw(a) with
y(a),w(a)eR , we have

a

1+d?

k

¥'(a,)= #0. (7.1.25)

ThusyEqa(7-1:23)undergoes;the;Hoptbifurcation at a=a, , £=0,1,2,---.
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Now, we look at the bifurcating periodic solutions close to x=0 and a=a,,
k=0,1,2,---. Let a=a—a, . The right-hand side of Eq. (7.1.23), together with the
corresponding linear and nonlinear operators, is in the form

fla.p)=(a, +a)d(0)¢(-1), (7.1.26a)
Lyx,=a,x,(-1), (7.1.26b)
N, (x,)=(a, +a)x,(0)x,(-1). (7.1.26¢)

Direct computation gives
F(0,x,6" +x,&™* +x;1+x,67*)

=a, (X, +X, +x,+ X, )(x,e7 +x,6"% +x,1+x,e7%)
=a, [(-1)*"ix? +0x,x, +(1+(=D*"i)x, x,

+(=1+(=D*i)x,x, +0x7x, +++].

(7.1.27)

Thus, the non-trivial periodic solution on the center manifold is asymptotically
stable since we have

@
K=—-+—[(-1)-3w,1<0, k=012, 7.1.28
3 (1+w:)[( ) ] ( )
Theorem 7.1.2 implies that Eq. (7.1.23) undergoes the Hopf bifurcation, which is
supercritical if & is odd and is subcritical if & is even. The periodic solution in
the polar coordinates (p, &) is in the form
5|a—ak|

———+0(la-a,)),
3w, +(~1)*! o= (7.1.29)

E()=-w,1+0(J|a-a,|).

p)=

As noted in (Hale 1977), there exist the characteristic roots with positive real
part at the critical values a=a,, k=1,2,--- for the Hopf bifurcation of the Wright
equation so that the bifurcating periodic solutions, albeit asymptotically stable in
the center manifold, are unstable in the state space. Only at a=a,=-n/2, the
characteristic quasi-polynomial has a unique pair of pure simple imaginary roots
and the other characteristic roots have negative real parts such that the periodic
solution arising from the subcritical Hopf bifurcation at a=-n/2 is asymptotically
stable. This stable periodic solution on the center manifold reads
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10|a-+m/2) n
p()= 3—2+O( a+> ),
e (7.1.30)
.f(t):—gt+0( a+§ ).

In the state space, the corresponding periodic solution of the Wright equation, see
(Faria and Magalhaes 1995), is as following

~ T f10|a+n/2| n
x(1)=2p(t)cosé&(t)+0O( a+5 )=2 Wcos( —2—t)+0(

7.2 Computation of Bifurcating Periodic Solutions

).(7.1.31)

T
a+—
2

There are basically two kinds of approaches available for constructing the bifur-
cating periodic solutions of a delay differential equation. One kind is based on the
center manifold theorem in Section 7.1, where the solution is first projected onto
the center manifold and then is determined in the form of power series. The other
kind is the power series approximation in the state space with respect to a properly
selected small parameter. This kind of approaches has two routines to follow. The
first is the Fredholm alternative (looss and Joseph 1980), where the solution is
expanded into the power series first and then is projected onto the center manifold
so as to determine the power series easily. The second routine includes the well-
known perturbation method and its varieties, such as the averaging method, the
method of multiple scales, and so forth. This section presents respectively the
method of Fredholm alternative and the method of perturbation, together with the
their applications to the Wright equation discussed in Subsection 7.1.3.

7.2.1 Method of the Fredholm Alternative

We first write the delay differential equation as a functional differential equation
on the Banach space C([-7, 0],R") in the form

d;’=f(a,x,), aeR, x,eC(-1,0lR"), f(a,0=0. (7.2.1)

Letpu(t)=x;(6)pandyassumeythatyEq(7.2.1) undergoes the Hopf bifurcation at
a=0 and the frequency of bifurcating periodic solution is w(¢), where ¢ is a
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small positive parameter, characterizing the small deviation of & from zero or the
small amplitude of periodic solution bifurcating just from the trivial solution.

The objective of this subsection is to construct the bifurcating periodic solution.
If we introduce a new time scale s=w(&)t, the task becomes to determine a 2m-
periodic solution u(s), which yields

a)(g)—:%= f(a(e),u), (7.2.23)

u(s,&)=u(s+2m,¢e), u(s,00=0, «a(0)=0, o(0)=w,. (7.2.2b)

We expand the solution of concern as

u(s,e) . u;(s)
a(e) =Z‘% a, |, (7.2.3)
wo(e)-aw, | ! o,

then the coefficients u,(s), a; and @;, j=1,2,...need to be determined. For this
purpose, substituting Eq. (7.2.3) into Eq. (7.2.2) and equating the same power of
¢, we have a set of linear differential equations

Jou; =0, (7.2.4a)

du
Jou, 20, —d—s—1+2a1fm (Olu)+ £, (O|u,|u,)=0, (7.2.4b)

du du
Jou, 3w, Kz+3a1fua (Olu,)-3w, —(_Lv—L

+3a, £, (Olt)+30t, £, (Ol ) +30t) £, (Olt)) (7.2.4¢)
+3 [ Oluy |0y )+ £, (Olwy |2, |1))=0,
where
J,=-w, %+A0 , A= [0}, (7.2.5)
whereas

fu(a|x)5% 5o (7.2.63)

azf(a,§1x+§2y)|

L. (@lx|y)=1,.(alylx)= 5653, |5-62-0 (7.2.6b)
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are a linear operator and a bilinear operator carrying vectors into vectors, respec-
tively.

The notations f,(alx), f.(alx|y), fu.(a|x|ylz), ... here are in fact the Ga-
teaux derivatives, see, (Debnath and Mikusinski 1999). What follows is the exam-
ple to show how to compute the Gateaux derivatives of the right-hand side of a
delay differential equation.

Example 7.2.1 Consider again the Wright equation in the form

)'c(t)=~(g+a)x(t—l)[1+x(t)] . (7.2.7)
Note that
dx(t+6) B
o) | do - O (7.2.8)
dr —(g+a)x(t—1)[l+x(t)], 0=0,
we have
%, Oe[-1, 0),
Sfla.p)= (7.2.9)

—(§+a)¢(—1)[1+¢(0)], 9=0,

if Eq. (7.2.7) is in the form of Eq. (7.2.1) on the Banach space C([-1, O],R).
From

d(8,x+8,y) pel-1 0)

fa,6,x+6,y)= g (7.2.10)
(G @B x(1)+ 8y (D[4 5,x(0)+6,(0)], 0=0,

we have

ﬁ, Oe[-1, 0),
1. (0lx)= do (7.2.11a)
—gx(—l), 6=0,
0 Oel-1. 0). (7.2.11b)
u 2.

fa(Ol)= { n. om0,
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0, fel-1, 0),

7.2.11
LD +xO¥D], 0=0, (7:2.11¢)

Ju O x| ¥)=

Now, we discuss how to solve Eq. (7.2.4), each equation of which is in a uni-
fied form as following

(Jou)s)=g(s), g(s)=g(s+2m). (7.2.12)

In general, it is impossible to determine any solution of Eq. (7.2.12) unless func-
tion g(s) yields some conditions, each of which is usually referred to as a Fred-
holm alternative. To introduce the concept of the Fredholm alternative, denote by
P,, and P, the subspace of C([-7, 0],R") composed of all continuous 27-
periodic functions in s and the subspace of all continuous 2= -periodic functions
in the dual space of C([-7, 0],R"), respectively. Note that the functions in P,
are those in s<[—7, 0], and the functions in P, are in s€[0, 7], we define a new
bilinear form

[a,b]:% [((@s)bs0ds, ac B, be B, (72.13)

where (-,), is the bilinear form in the usual sense at the bifurcating point a=0.
The adjoint operator J, of J, in the sense of [J,y,@]=[w,J @] reads

J;=w0%+A; . (7.2.14)

At the bifurcating point a=0, we solve the eigenvalue problem f£, (0|{,)=1w,$,
and its adjoint eigenvalue problem £ (0|{;)=i@w,{; under the condition
(€6:£0)0—1=(£5.£0)0=0 . Let x(s)= €*{y, then x and ¥ arein P, and satisfy

Jy x=J, 7=0. (7.2.152)
Similarly, we can also find a x"(s)= e ¢, €P,, such that
Iy =J. 1 =0. (7.2.15b)
With this vector y"(s), we have
[x,u]=1, and [y ,u,]=0 forall j>2 (7.2.16a)

if we define

e=fy s ul . (7.2.16b)
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As shown in (Debnath and Mikusinski 1999) or (Zeidler 1995), we have the theo-
rem of Fredholm alternative as following.
Theorem 7.2.1 Equation (7.2.12) is solvable if and only if

[x".gl=[x",8]=0. (7.2.17)

When g(s) is a real function, the solvability condition is given by two real
equations. Then, «; and @; in Eq. (7.2.3) can be selected through condition
(7.2.17) so that each equation in Eq. (7.2.4) is solvable.

The solution #, of Eq. (7.2.4a) is in the form u,=ce*{,+ce *{,. As the origin
of s is indeterminate, we may just as well use another transformation s—s+J so
that ce”® =€ is real-valued. Without loss of generality, we have

w=Cl+x YA+ » (7.2.18)

where ¢=1 is determined from Eq. (7.2.16a). According to the definitions, we
have [x".x]-1=[x",x]=0 because ({;.¢0)o—1=({;.66)o=0. Thus, we obtain

(X" fuaODI=[E5. €7 £, (0186)]=0, and [x",f,, Olx+X|x+X)]=0. As a result,
the solvability condition (7.2.4b) gives

—2iw, +2a,[ %", f.. (01 2)]=0. (7.2.19)

By differentiating the eigenvalue problem f, («|{,)=A4¢, with respect to ¢ and
evaluating the result at =0, we have

A% o+ o = £, (018 0)+ £ (01€,) , (7.2.20)

where the prime represents the derivative respect to ¢ . According to the Fred-
holm alternatives, the above differential equation is solvable if and only if

A(0)=(L05 fua 00D =L X", fa 01 0] (7.2.21)

As the theorem of Hopf bifurcations assumes A'(0)20, we have ;=0 and
w, =0 . By using mathematical induction in (Iooss and Joseph 1980), we show that
a;,=0, ,,,=0, j=0,1,2,. (7.2.22)

This fact, together with Eq. (7.2.3), indicates that the bifurcation parameter & and
the vibrating frequency @ are in the following form

2 2
a="ra,+0("), w=00+ 0, +0("), (7.2.23)
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where the coefficients a, and @, can be determined through the following con-
dition
3w, +a, A O+3(x, £, (Ol x+Zu,)]

2 AT (7.2.24)
Hx s Lo Ol x+ X1 x+ 21 x+201=0.

7.2.2 Stability of Bifurcating Periodic Solutions

Let u(s) with s=w(e)t be the bifurcating periodic solution of Eq. (7.2.2) and
v(¢) be a small disturbance of # such that u(s,£)+v(¢) also satisfies Eq. (7.2.2).
Then, v(¢) yields

(—(11;=f(a,u+v)—f(a,u) . (7.2.25)
The following linearized differential equation governs the stability of the bifur-
cating solution

L=t (@) use), (7.2.26)

where f,(a(e),u(s,e)v) is periodic in § . On the basis of the Floquet theory, let

v(t)=e”E(s), s=w(e)t, E(s)=E(s+2m) forall seR. (7.2.27)

Then, we have
a)(g)js—é+ﬂ5:fu (a(e),ulE). (7.2.28)

A similar procedure used in the previous subsection gives the following theorem.
Theorem 7.2.2 For sufficiently small parameter &, the following estimations
are true

pe)=-a'(e) , p=Rel'(0). (7.2.29)

Thus, the bifurcating periodic solution # is asymptotically stable if a,p>0 and
unstable if @, p<0.
The proof of this theorem is referred to, for example, (Iooss and Joseph 1980).
Example 7.2.2 Consider again the Wright equation in the form of Eq. (7.2.7).
Example 7.1.2 indicates that the trivial solution of the Wright equation undergoes
the Hopf bifurcation at @=0 and the frequency of the bifurcating periodic solu-
tion is @,=n/2 . In what follows, the method of Fredholm alternative is used to
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determine the approximate periodic solution. On the Banach space C([-1, 0],R),

the following notations are defined first

[u()(@)=x,(0)=x(1+6),

dg(9)
de

—<§+a)¢(—1>, =0,

, de[-1, 0),
[4,81(0)=[f, (@|P))(O)=

(ON,$10)=C+a ){ oL O
#(0)¢(-1), 6=0.
Then, Eq. (7.2.8) can be written as

gl—l—zzfiai,t—i-@Na (u).
dt

The adjoint operator A, , on C([0, 1],R), of 4, , is given in the form

_dy(9)
do

~Graw®, =0,

(4.9 1O)=L1, (aly))(®)=

with respect to the inner product
8. = OPO)-C+a) [ (s+D(s)3s.

Solving the dual eigenvalue problems

fu<0|¢0)=i§40, f,,*<0|:;>=i§¢3‘,(45,50)0—1=(¢;,Zo)0=0

gives

) Lm0
$o(@)=expli 5 ) §o (@)= . ( /2) exp( = )

and

2=60(0)e", 2 =, (@)™,

X d<(0, 1],

E}

(7.2.30a)

(7.2.30b)

(7.2.30c)

(7.2.31)

(7.2.32)

(7.2.33)

(7.2.34)

(7.2.35a)

(7.2.35b)

Now we use the Fredholm alternative to compute the power series of the bifur-

cating periodic solution. Because @;=0 and @, =0, we have
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[, ()IO)=C, (0)e" +& o (O)e™™, (7.2.36)

Clﬁ—f Oluy)+e £, (01,165 +e7" £, (015,14, - (7.2.37)

Equation (7.2.37) indicates that u, is in the form

[u,())(0)=5,(0)e™ +£, ()™ . (7.2.38)
Substituting Eq. (7.2.38) into Eq. (7.2.37), we have

§[2ie2i5§2 (0)-2ie L, (0)]=e*¢, (9)+e'2‘f2 @), 6€[-1, 0),(7.2.392)

and
2ie* ¢, (0)-2ie ° &, (0)
=™ ¢, (-D)+e L, (-D]-2e™* Sy (-D+e L (-D)).

Equation (7.2.39a) gives &,(8)=ind,(8). So, we have ¢,(8)=¢,(0)e™ and
£, (-1)=-¢,(0) . Hence, we find the coefficient £,(8) in [u,(s)}(&)

(7.2.39b)

Cz(ﬁ)———4 2 girt (7.2.40)
Furthermore, straightforward computation gives
. , . R al(2-3n)—-(6+m)i]
-0, +a, A (O)=—y ,f.Olx+x [u,)]= , (7.2.41a
2 T A 0)=— [ Ol x+ 1 uy)] 00 72/4) ( )
2n+4i
20)=[1" ./, O )]==—=#0. (7.2.41b)

By the way, the implicit differentiation can also lead to Eq. (7.2.41b). Solving Eq.
(7.2.41) for a, and w, gives

>0, w,=——. (7.2.42)

In summary, the bifurcating periodic solution of Eq. (7.2.7) at a=0 reads

21 21wt

x(2)=[u(wt)](0)=2¢coswt+&* Re( )+0(e?)
5,2 (7.2.43a)
=2gcosmt+ z (2cos2wt+sin2wt)+0(g>),
2
a(s)z%az +0(e")= 3’;()252 +0(e"), (7.2.43b)
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2

w(e)=w, +%a)2 +O($4)=—‘g-—-%g2 +O(g4) . (7.2.43¢)
If « is taken as the bifurcation parameter, we can express ¢ and @ as

1
P L (7.2.44)
3n-2 2 3n-2

so that the solution in Eq. (7.2.43a) reads

()2, 2% cos[(B-—2%
2% o cos(n-22 Y ]sin[(m——% )}
3n-2 3n-2 3n-2"

The bifurcating periodic solution at @=0 is asymptotically stable since Egs.
(7.2.41b) and (7.2.42) give p=ReA'(0)>0 and «,>0. Obviously, Eq. (7.2.45) of-
fers a more accurate approximation than Eq. (7.1.31) for the solution of the Wright
equation. ‘

7.2.3 Perturbation Method

A large number of perturbation methods have been well developed to deal with
the engineering systems governed by nonlinear ordinary differential equations. In
this subsection, the perturbation method is briefly described only for a type of
functional differential equations. It is necessary to mention that the secular terms
may also appear as in the case of ordinary differential equations. If this is the case,
they must be eliminated from the functional differential equation of concern to en-
sure that the equation has a uniformly bounded solution. For this purpose, it is
usually to re-scale the time before the perturbation method is applied.

To demonstrate the perturbation method as simple as possible, we consider a
second order scalar autonomous delay differential equation

{)‘é(t):F(xt "x':t ,a),

. . (7.2.46)
x,(0)=x(t+0), i, (0)=x(t+6), Oe[-r, 0],

with sufficiently smooth right-hand side and 7>0, though the following procedure
and the results are valid for more general scalar autonomous delay differential
equations of higher orders.

Assume that F(0,0,a)=0 holds for all parameter values of « and there is an
a, such that for a<a, all the roots of the characteristic quasi-polynomial associ-
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ated with the linearized operator stay on the open left half-plane, whereas a unique
pair of roots of the characteristic quasi-polynomial is crossing the imaginary axis
at +iw, when a=q,. If this is the case, Eq. (7.2.46) undergoes the Hopf bifurca-
tion.

To construct the bifurcating periodic solution, we first introduce a new time o
through t=c(a)o with c(a,)=1 such that the period of solution is fixed for the
new time o . Let y(o)=x(co), then Eq. (7.2.46) is equivalent to

{y(a)=c2F(ya Vo), (1247
V& (9)=y(o'+6), J‘}o- (6)=y(0'+9), 06[_1/09 O]a

where the dot now represents the derivative respect to the new time & . At a=q,,
the linearlized differential equation has the solution y(o)=¢cosw,o , where ¢ is
=0. Now, we look for the periodic solution of Eq. (7.2.47)
in the form (up to time shift)

related to « and £|a

=a)

y(o)=gcosw,o+&y, (O)+&y,(O)+- (7.2.48)

for small |€| . Because the change ¢——¢ 1is equivalent to a phase shift of the os-
cillation by projection, which preserves the invariance of the cycle and hence does
not change the values of « and c. Thus, we need to study the following forms of
o and ¢

c=ltc,e’ +e,et+--, (7.2.49a)
a=a,+a,e  +a,et +--. (7.2.49b)

Substituting Egs. (7.2.48) and (7.2.49) into Eq. (7.2.47), expanding the right-hand
side in terms of & and equating the same powers of £, we have a series of equa-
tions with respect to y,(o’) that can be solved successively as in the case of ordi-
nary differential equations. The coefficients ¢, and «; are chosen such that no
secular terms are involved. The periodic solution of Eq. (7.2.46) can be achieved
by using the following scheme involving indefinite steps

(D15€0,0) =Y, (C5,0, ) > Y3 > ¥ (C4,a) (7.2.50)

As for the Hopf bifurcation, we have the following theorem, see (Kolmanovskii
and Myshkis 1999).

Theorem 7.2.3 Assume that the conditions associated with the characteristic
quasi-polynomial that governs the existence of Hopf bifurcation hold, and that
@, #0 holds'in Eq. (7:2:49b). If @, >0 (or «,<0) and « increases (or decreases)
and passes through a=q,, then exactly one periodic solution (up to the time shift)
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of Eq. (7.2.46) occurs near the trivial solution of the same equation. This solution
is asymptotically stable (unstable), and has an asymptotic representation as
a—a; (or a—ay)

x(l)=1/ﬂcos&t+0(|a~aol) , (7.2.51a)
a, c

e=1+2(a-a,)+0(a-a,|) . (7.2.51b)
a,
In addition, any solution of Eq. (7.2.45) on the entire ¢ -axis and sufficiently close
to zero tends asymptotically to either zero or the periodic solution as f—+ and
t—>—00.
Example 7.2.3 Consider again the Wright equation in the form

X(t)=—bx(t-D)[1+x(1)] . (7.2.52)

As shown in Example 7.1.2, Eq. (7.2.52) undergoes a Hopf bifurcation at b=mn/2
and the bifurcating periodic solution is asymptotically stable. We are now interest-
ed in an explicit approximate form of the bifurcating periodic solution. It is easy to
verify that the periodic solution of the linearized equation of Eq. (7.2.52) is in the
form

X, (t)=acos(§t+q)) , (7.2.53)

where a and ¢ are two constants. Thus, we look for the periodic solution of Eq.
(7.2.52) in the following form

x(t)=e3coslt§o—-+<92x2 (0)+€’x,(0)++, (7.2.54a)
t=(l+c,e* +c,e* +-)o, (7.2.54b)
b=§+b282 +b,et+---, (7.2.54¢)

for a small positive parameter ¢ . We have
x(t—1)=z;"cosg[0'—(1+c2$2 +eet 9™

+&tx,(c—(+c e’ +c,e' ++) ") (7.2.55)

+&ix(0-(+c e +c 6t +-) )+
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since t—1=co-1=c(o—c™"). Substituting Eqgs. (7.2.54) and (7.2.55) into Egq.
(7.2.52) and equating the coefficients at equal powers of ¢ give the following

equations.

X, (0)=—§x2 (a-l)—%sinn%cos%z, (7.2.56a)

X5 (o-):—gx3 (0'—1)—§[x2 (0'—1)c0sn—20'—+x2 (O')Sinlti]

R (7.2.56b)
T o M . O . Mo
——¢, C0OS———C, Sin——b, sin—.
4 2 2 2 2
Solving Eq. (7.2.56a), we have
x (o-)—lcos7w'+isin1w' (7.2.57)
s 10 ' o
Substituting Eq. (7.2.57) into Eq. (7.2.56b) yields
3
X, (0')=—£x3 (0'—1)+(l—ﬂ—c2 )cosE+(—n——£c2 -b, )sinE
2 40 4 2 40 2 2 (7.2.58)

3n 3noc wn . 3no
+—c0$—— ——sin——,
40 2 40 2
Eliminating the resonant terms cos(no/2) and sin(no/2) in the right-hand side
of Eq. (7.2.58), we find
1 3 1

L LY 7.2.59
€2 2740 20 (7.2:39)

Substituting Eqgs. (7.2.57) and (7.2.59) into Eq. (7.2.54) gives the periodic solution

of the Wright equation
2

x(t):gcosEZE+%[ZCosn0'+sin7t0']+0(£3) , (7.2.60a)
t=[1+~1%82 +0(e)o, (7.2.60b)
b= ot (7.2.60¢)

2 40 20 | o

Taking b as the bifurcation parameter, we solve Eq. (7.2.54¢) for £ by ne-
glecting the higher order terms and then obtain
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-— - 2 _
o |P=T2 _y (1006 n/z)’ ont(l—E )=l 4(b n/2)]_ (7.2.61)
b, 3n-2 10m n(3n-2)

There follows

,10(b—n/2) n 2(b—7/2)
x(t)=2 cos{[ 1t}
3n-2 2 3n-2 (7.2.62)

L Ab-1/2) 4(b—m/2) . _4(b-1/2)
v {2cos{[n 3o lt}+sin{[n BT 1t}

Theorem 7.2.2 indicates that the bifurcating periodic solution from the trivial
solution is asymptotically stable. It is easy to see that this solution is the same as
what we have had in Example 7.2.2 if the bifurcation parameter b—m/2 is substi-
tuted with « .

Examples 7.2.2 and 7.2.3 demonstrate how to determine the bifurcating solu-
tion of a delay differential equation on the original state space by using two differ-
ent methods, while Example 7.1.2 deals with the bifurcating solution of the same
equation on the center manifold. Among these methods, the perturbation method
looks the simplest in solving the Wright equation. As well known, the perturbation
method has a great number of varieties, say, the averaging method, the method of
multiple scales, etc. They are also applicable to the delay differential equations.
The next two sections will demonstrate the method of multiple scales through the
examples of the Duffing oscillator with delayed feedback.

7.3 Periodic Motions of a Duffing Oscillator with Delayed
Feedback

This section deals with the free vibration of a Duffing oscillator with delayed ve-
locity feedback. It begins with the analysis on the stability switches of equilib-
rium, and then presents how to determine the bifurcating periodic motions during
the stability switches by using the Fredholm alternative and the method of multi-
ple scales, respectively.

As discussed in Subsection 1.1.1, the re-scaled dynamic equation of the oscil-
lator reads

() +28 x(£)+x(t)+ o’ () =vi(t-71) , (7.3.1)
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where the condition 2{~v>0 is assumed to hold such that the linearized system
is asymptotically stable when the time delay 7 disappears. For simplicity, the
study is confined to the case when x>0.

7.3.1 Stability Switches of Equilibrium
The system of concern has a unique equilibrium x=0 since x>0. The perturbed
motion Ax(#) near the equilibrium yields a linear delay differential equation
N (6)+28A%(1)+ Ax(t)=vAx(t—7) . (73.2)
The corresponding characteristic equation of Eq. (7.3.2) reads
D(A,0)=2* +2{A+1-vie™ =0 . (7.3.3)
Obviously, 4=0 is not the root of Eq. (7.3.3). When Eq. (7.3.3) has any pure
imaginary root A=i® with >0, it becomes
D(iw,r)=(1-0*)+2iw—ivoe ™ =0 . (7.3.4)

There follow the corresponding real and imaginary parts

{Re[D(iw,r)]EU—wz)—va’sinm:‘)’ (1.3.5)

Im[D(iw,7)]=2{w—vawcoswt=0.

The second equation in Eq. (7.3.5) requires that 2¢7/[v|<1. This, together with
the assumption 24 -v>0, gives v<—24<0. Hence, we have

-0 o’-1

sinwr= = | | 2
Vo viw
(7.3.6)
cosa)r=£=—2§.
v
Eliminating the harmonic terms in Eq. (7.3.6) yields
F(o)=(1-0%)* +(2lw)’ -(vo)* =0* + po* +1=0, (7.3.7)

where p=4(?-v*-2 . Equation (7.3.7) has two positive roots

oy, =,/%(—pi\/p2—4) , (7.3.8)

because p<0 and p?-4>0. At these two roots, the following inequality holds
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dr
. = £20,,4/ p* -4>0 (<0). (7.3.9)
o
D=0
It is easy to see that w?>1 and w?<1. For each of these two roots, hence, Eq.
(7.3.6) gives a series of critical time delays as following

7, k—l arccos(— )+2ch] £=0,1,2,... (7.3.10a)

M
Ty = —-[211: arccos(——- |é|,)+2k7t] k=0,1,2,... (7.3.10b)

As shown in Subsection 3.5.1, a pair of roots is crossing the imaginary axis from
the left to the right when z=r,, , and from the right to the left when r=17,, .

More specifically, we look at a case study when £=0, v=—0.5. Now, Eq.
(7.3.8) gives @, , =(J/17+1)/4 and there follow the critical time delays from Eq.
(7.3.10)

4 T
7, =——(—+2km)=1.226, 6.132, 11.04, 15.94, .... (7.3.11a)
. J1_7 +1 2
(7.3.11b)
which can be ranked as
0<7y g <Tpo<Tyy <Typ<Tp, <Tp3<--. (7.3.12)

As analyzed in Subsection 3.5.1, this sequence of critical time delays indicates
that the equilibrium x=0 is asymptotically stable for r€[0, 7,,) and
7€(7,,, 7,) » but unstable for re(r,, 7,4) and re(ry,, +). As a result, the
equilibrium undergoes three stability switches with an increase of time delay.

At each critical time delay, Example 7.1.1 and Eq. (7.3.9) imply that a non-
degenerate Hopf bifurcation occurs when the time delay crosses the critical value.
Given the system parameters, if there exist certain & and ; such that 7,, =7, ,
then the system has two pairs of conjugate pure imaginary roots and undergoes the
Hopf-Hopf bifurcation at such a critical time delay. This complicated phenomenon
is out of the scope of this book. In the next two subsections, both methods of
Fredholm alternative and multiple scales are respectively used to determine the
periodic motions owing to the Hopf bifurcation.
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7.3.2 Periodic Motion Determined by Method of Fredholm Alternative

This subsection presents the computation procedure for the periodic solution,
which arises from a Hopf bifurcation at the critical time delay 7,, of Eq. (7.3.1) in
three steps by using the method of Fredholm alternative.

(1) Computation of eigenvectors

Let a=7r-7, denote the bifurcation parameter. By using the transformations
t—>t, x(rt)—>z,(t), x(r1)—>z,(t), we recast Eq. (7.3.1) as the following func-
tional differential equation

z,=f(az,), (7.3.13)

where z=[z, z,]"eR?, z,(0)=z(t+6) eC([-1, 0],R*) for —1<6<0, and

dg
R o _1’ 0 s
30 €[-1, 0)

0 1 0 0
f(a,¢)z{ }¢(0)+[ )}¢(—1)+ (7.3.14)

—(r,+a)’ =2(r,+) 0 v(r,+a

[ o } o=0.
— 47y +a) ¢ (0)
The operators f,(a|), fi.(@|), fu.(all) and f,.(a|||) are as following

dx

=, 6q-1, 0),
S alx)= 0 0 (7.3.15a)
[—(r +a)? =26 (¢ +a)}x(0)+{0 w(r +a)}x(—1)’ 6=0,
0, Oe[-1, 0),
S (@)x)= { ) 0 0 }x(O)J{O O}x(—l), o=0, (7.3.15b)
-2ty +a) -2 0v
Sulalx|y)=0, (7.3.15¢)

0, 0¢€[-1,0),

fm(alx\ylz)f[ 0 } geo (315)
—6p(zy+a)’ x,(0)y,(0)z,0) | '
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Moreover, the adjoint operator f; (0]-) of f,(0-) reads
W e, 1,

0 0 1 0 90
w0 —(ro+az)2 =2{(ry+a) V/() 0 v(r,+a) o

It is easy to compute the eigenvector {,(#) of the eigenvalue problem:
[.(0[¢y)=1w{, . This relation implies that

[ (aly)= (7.3.16)

(ifa" =iw{,, O¢[-1,0), (7.3.17a)
0 0 =i 0 7.3.17b
B _24, Co(0)+ 0 vz, Co(-D=iw ¢ (0). (7.3.17b)

Equation (7.3.17a) makes it possible to assume
1.
{0(9)5{8}3'“’9 ) (7.3.17¢)

Substituting Eq. (7.3.17¢) into Eq. (7.3.17b) yields B=iw .
The adjoint eigenvalue problem f] (0|{;)=iw{; gives

d{;’gg)=-1 ol (0), 00, 1], (7.3.18a)
9 (0){ N }c;(l){o 0 }:iwc;(oy (7.3.18b)
2t 0 ve,
Thus, ¢; is in the form
{o(@)=D[C 1]e™, (7.3.18¢)

with C=iz,’/@ . It is possible to choose the constant D such that (&, &)=1 un-
der the following bilinear form

00
v, )=p(04(0)+ Ew(sﬂ)[o o }¢(s)ds. (7.3.19)

There follows
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@
D=————— o
i(r,” +@ " +ivr,o-e

(7.3.20)
With help of the constant D , it is easy to prove that ({5, &0)=0.

(2) Computation of the power series of the bifurcating solutions

Now, the Fredholm alterative is used to determine the bifurcating periodic solution
in a power series. For simplicity, a time transformation s=@(g)t is introduced
such that the task becomes to seek a 2w -periodic solution in terms of a properly
selected small parameter 0<e<<1 . This solution yields

ﬁ(s)js—"# (a(e).u), (7.3.21a)

u(s,e)=u(s+2me), u(s,0=0, a(0)=0, &(0)=w. (7.3.21b)

Substituting the following candidate solution
82 83
u(s,e)=u, ()=, (s)+?u3 (s)+0(e*),
~ ! !
a(e)=¢q, +7a2 +0(&”), (7.3.22)

2
a(&)=w+Ew, +%a)2 +0(&%),

into Eq. (7.3.13) and equating the same power of &, we have a set of linear differ-
ential equations like Eq. (7.2.4)

w%: £.0m,); (7.3.23a)
0% 2 £ (01, g, ()
ds =Ju L) T8I\H)

du
81 ()=-20, 42 £, Ol )+ £, Ol ;) (7.3.23b)

du
a)E}_=fu (Oluy)+g,(uyu,) ,
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du, du,

+3a, fua (01”2)_3w2“d?

8, (u,u,)=-30,

+3a2fua (Olul )+3a1fuua (O|ul |u1 )+3a12fu
+3fuu (O|ul |u2)+fuuu (O|ul |ul |u] )

Equation (7.3.23a) has a real solution
[, ()/(O)=L, (B)e" +C, (D)e™. (7.3.24)
Substituting it, together with £, (a|x|y)=0, into Eq. (7.3.23b), we have
g/ (u)=-20,[i{ ,(0)e" il (0)c™]
+2a,[e" £,, (01 ) +e™ £, (018 )).
Using the condition ({;,¢,)-1=(¢;,&,)=0 results in

Olu,) (7.3.23¢)

aa

(7.3.25)

&‘,gl(ul)]=2ni [ s = Ao, +a, 200, (7.326)

is

where y =¢(,e”
£2,(u;)=0 holds.

Now, Eq. (7.3.23b) degenerates to Eq. (7.3.23a) and there exists a £,(8) such
that

. The Fredholm alternative gives «;=0 and @,=0, thus

[, ())(O)=, (O)e” +E(9)e*‘ . (7.3.27)

According to Eq. (7.3.15b), as well as ;=0 and w, =0, we have
du,
8, (u),uy)="3w, E'H;az Sua Ola)+ £, Oluay |0y | ). (7.3.28)

In order to evaluate the right-hand side of Eq. (7.3.28), we write #u, as
u =[u, u,]", where [u,(s5))(0)=e"*""" +e7“% _ Substituting this expression into
Eq. (7.3.15d) gives

0, O¢[-1, 0),

S s (Ol |, |1 )= 0 _ 0 oo, (7329
_6;12-021413’[(0) _6ﬂT02(eis +e_iS)3 >

Thus, we have
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0
—6m02(e“‘+e“)3} (7.3.30a)
:_6IUTOZD(eis +e—ix)36—is’

(X"fuuu(()'ul |ul |ul))=e_ixD[C 1]|:

ran A |u1)]=2%jznu*,fm(0|ul | e, | ;))ds (73.30b)

=-18 yroz D.
Using the Fredholm alternative condition [ x*, g, (#,,4,)]=0, we have
3[—iw, +a,4'(0)]-18uz,’ D=0, (7.3.31)
whereby we obtain

3.3 8
6uw T vsInw

2 =
ppl(r) +0) o't 1207t (@0 +1,” Jvcosw]

_ -u0* 3 05 -
- 2 232 2 3 2 2 2 _2yq° (7.3.32a)
prll@”—75) +0™ (4d7, +4lw 1, +v 0 1))

B 6uOTL[ P (T2 +0° +@ T veos0)+p, 0 T, vsinw]

,=
Pel(ry +0) +vi o't 20 1 (0 +1, )veosm]

_ U0z (@ +72 +200°1,) py—0(@ - 13)p) ]

S 7.3.32b
pel(@ —t})’ +0’ (47} +4lw’t, +v e’ t])] ( )

where pp=ReA'(0) and p,=ImA'(0). By using implicit differentiation or com-
puting (o, /.. (01¢,)) , we obtain

, iw(@*+12
A'(0)= — (2 0,) —, (7.3.33)
Tlo” +7, +2{0 1y +iw(w” —14)]
as well as
a)z(a)2+r§)(a)2—r§)
Pr=

r (@ 47,2 +2l0°t,) +(@’ —7lw)?]

(0’ +1; Yw? +r§‘ +2§roa)2)

p,= (7.3.34)

- r(,[(a)2 +2'02 +2§a)270)2 +(a)3 —r(fa))z] '
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Using the condition of marginal stability, it is easy to show that except for the
factors py and 7,, the denominators in Eqgs. (7.3.32) and (7.3.34) are the same.
Thus, we simplify Eq. (7.3.32) to

_ —6ur, _ —12ur,

a,= = s
W7 +T; (V2 44-407)F (0 -4V +4-4L7) (7.3.35)
w, =0.

In summary, the bifurcating periodic solution reads

2(1)=2,(0)=[u(«1)](0)

&2 - T 2% i . (713.36a)
=[£¢o(0)+74“0(0)]e +[e{0(0)+7€0(0)]e +0(g7),

a=%a2 +0(&?), (7.3.36b)

d=w+0(g%) . (7.3.36¢)

In fact, Eq. (7.2.22) gives a=¢’a,/2+0(&*) and @=w+0(&*). As done in Sub-
section 7.2.1, it is also possible to substitute Eq. (7.3.35) into Egs. (7.3.36b) and
(7.3.36¢) so that the periodic solution given by Eq. (7.3.36) is in term of the bifur-
cation parameter « .

(3) Stability of the bifurcating solutions

As stated in Theorem 7.2.2, the bifurcating periodic solutions are asymptotically
stable when A=aq, p, >0, or unstable when A4<0 . From Eq. (7.3.32a), we have

sgnd=—sgn[pu(w’-7;)], sgna,=-sgnu (7.3.37)

Note that the new time in Eq. (7.3.13) is the product of 7, and the original time,
and that the vibrating frequency @ obtained here is the product of 7, and the vi-
brating frequency obtained in Subsection 7.3.1. Keeping these facts in mind, we
see that sgnA=—sgnu<0 at r=7,;, and sgnA=sgnu>0 at r=r,,. That is, the
periodic motions bifurcating at r=r,, are unstable, and those bifurcating at
T=T,, are asymptotically stable.

Consider again the case when =0, v=—0.5, ¢#=0.1. Subsection 7.3.1 indicates
that @, =1.281 and w,=0.7808, together with the critical time delays 7, and
7,4 - Simple computation gives

A=—0.1187, (@/7y,7o)=(0,,7,,)= (1.281,1226),  (7.3.38a)
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A=0.8705, (0/74,7,)=(@,,7,,)= (0.781,6.035),  (7.3.38b)
A4=-0.7345, (0/7y,7,)=(@,,7,,)= (1.281,6.132),  (7.3.38¢)
A=-08635, (@/7,,7,)=(®,,7,,)=(1.281, 11.04), (7.3.38d)
A= 13470, (0/74,7,)=(@,,7,,)= (0.781,14.08).  (7.3.38¢)

As a result, the periodic motions bifurcating at 7=r,, are unstable and those at
T=t,, are asymptotically stable. Noting the sign of «,, we know that the system
undergoes the subcritical Hopf bifurcations at r=r,,, r=r,, and so on.

7.3.3 Periodic Motion Determined by Method of Multiple Scales
(1) Approximate periodic solution

To simplify the computation of the periodic motions of Eq. (7.3.1), the study in
this subsection is confined to the case of small damping, weak nonlinearity and
weak velocity feedback. That is,

¢=el, v=eb, u=ei, (7.3.39)
where
O<e<<l, £=0(1), $=0(1), Ap=0(l). (7.3.40)

Because Eq. (7.3.1) is an autonomous system, the period @ of a bifurcating mo-
tion is an unknown, and can be denoted by

o’ =l+eo, (7.3.41)

where o=0(1) is the detuning frequency. Upon the this assumption, Eq. (7.3.1)
can be written as a linear ordinary differential equation subject to a small pertur-
bation of both nonlinearity and delayed feedback

#(0)+ o x()=e[ox(t)- o () 28:(t) +95(t—7)] - (7.3.42)

Now, we try to find the following expansion of two time scales for the solution
of Eq. (7.3.42)

x(0)=x,(T,.T)+&x,(T,.T,)+0(?), T,=t, T =et. (7.3.43)

For this purpose, it is helpful to use the following differential operators defined in
(Nayfeh and Mook, 1979)
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i—_-_a_+g-a_+0(gz )EDO +‘£ZD1 +0(82 ),
dt2 or, oI, (7.3.44)
diT:D‘f +2eD, D, +O(&?).

!

Substituting Egs. (7.3.43) and (7.3.44) into Eq. (7.3.42) and equating the same
power of ¢, we obtain a set of linear partial differential equations

DZx,(T,.T)+o*x,(T,,T,)=0, (7.3.45a)
Dy x,(Ty, )+ x,(Ty,T,)==2D, D, x, (T, T, )+ 0o (T, 1) = ftxg (T, T,) (73.45b)
~2¢ Dyxo (T, T,)+9Dyx, (T, —7.T,).
Solving Eq. (7.3.45a) for x,(7,,T;), we have
x,(Ty, T, )= A(T))e™™ +cc, (7.3.46)
where cc denotes the conjugate term and
A(T, )E%a(Tl e (7.3.47)

Substituting Eq. (7.3.47) into Eq. (7.3.45b) yields
DZix,(T,.T))+@*x,(T,,T,)==2iwD, Ae*™ +c4e'"™
— (AP 4347 4e') (7.3.48)
—2iwAe™™ +ivwe " 4e™™ +cc.
To eliminate the secular term in the right-hand side of Eq. (7.3.48), let
iw(2D,+2L ~Ve ) A~oA+3 14> A=0 . (7.3.49)

Substituting Eqs. (7.3.47), (7.3.39) and (7.3.41) into Eq. (7.3.49) and separating
the real part and the imaginary part, we have a set of autonomous differential
equations that govern the amplitude (7;) and the phase £(7;)

2eD,a=(-24 +vcoswT)a,

2ewaD, f=—(w’ —1+vwsina)1)a+_3::ia3_ (7.3.50)

Thus, the first order approximation of periodic motion is

x(t)=a(st)cos|wt+ p(&t)]+o(e). (7.3.51)
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To determine the steady state motion, let D,a¢=0 and D,$=0 in Eq. (7.3.50).
For the equilibrium =0, it is easy to see from the first equation in Eq. (7.3.50)
that it is asymptotically stable if and only

-2 +vcoswr<0. (7.3.52)

This stability condition offers the same information as the critical condition
(7.3.6). Because the behavior of equilibrium is clear, we pay attention to the case
when a # 0 hereafter. In this case, o yields

-2{ +veoswr=0,

(0* —1+va)sina)2')—§£oz2 =0. (7.3.53)

Eliminating the harmonic terms in Eq. (7.3.53) gives the amplitude-frequency
equation

(0% -1 3”“ 2HE 32 (4g? —v)w?=0. (7.3.54)

Noting that |v|22§ , we have two branches of solution

a,= ‘/54—(@2 ~1Fanv2—-4(7) . (7.3.55)
U

From the second equation in Eq. (7.3.53) and Eq. (7.3.54), we have

3ua)
sinwr= L (0 -1 ,u 12 )=t ? (7.3.56)
Vo | |

Given a time delay 7, solving the first equation in Eq. (7.3.53) for @ under con-
dition (7.3.56) gives the frequency corresponding to each branch of solution

: —[arccos( | | )+2k7t a=qa,,
w=—cos ' =1, 2 (7.3.57)
4 v —[2n—arcc0s(—W)+2kn], a=a,.
T \

Here £=0,1,2.... imply an infinite number of frequencies and corresponding peri-
odic motions as well. However, the assumption in Eq. (7.3.41) may hold only
when £=0.

One may wonder the asymptotic stability of the periodic motion. Unfortunately,
it is not possible to check the stability by linearizing Eq. (7.3.50) at the steady
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state motion because the small perturbation A near the steady state motion
yields

2eD,Aa=0 . (7.3.58)

In fact, the stability of a bifurcating periodic motion has to be determined through
the higher order approximation in Eq. (7.3.43).

(2) A case study

Now, we look at the case when =0, v=-0.5, 4=0.1 again. Substituting these
parameters into Egs. (7.3.57) and (7.3.55) yields

4 3m, 3n
o —\/6—3[(5—) —0. 5(—) 1], \/—[(—) 0-5(2—1)—1] ,» (7.3.59)
where 7e€(0, 7,4)=(0, 1.226) is for the unstable branch «;, and 7€(0, 7,,)
=(0, 6.035) for the asymptotically stable branch «,. Figure 7.3.1 gives the rela-
tion between a given time delay and the frequency of periodic motion. Figure
7.3.2 shows the amplitude of periodic motion versus the time delay, together with
the numerical results obtained by using the Runge-Kutta approach.

As shown in Fig. 7.3.2, the system has an asymptotically stable equilibrium, an
asymptotically stable periodic motion and an unstable periodic motion if
7e(0, 7,4) . When 7e(r,, 7,54) , the equilibrium becomes unstable and the un-
stable periodic motion disappears, only the stable periodic motion remains. When
7>7,,=6.035, the equilibrium becomes asymptotically stable again, but loses
stability soon when 7>7,,=6.132 . Hence, the equilibrium undergoes the Hopf bi-
furcations at 7,,=1.266 and 7,,=6.035, respectively.

2.0
wr=15n/2

L5F \wfzn/z or=3n/2
-

@,

10|
“%s) N

S . U, Sl U
7

0.0

Tio %20 T1a

Fig: 7:3:1. Delay-frequency relation of periodic motions
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Stable
- ~ - - Unstable

o Numerical

Fig. 7.3.2. Delay-amplitude relation of periodic motions

Figure 7.3.3 presents two trajectories of the system with time delay r=1. The
phase trajectory initiating from x(£)=1+¢+2.5¢t2, te[-1, 0] approaches the as-
ymptotically stable equilibrium, while the phase trajectory initiating from
x(1)=10+10¢+25¢%, te[~1, 0] approaches an asymptotically stable periodic mo-
tion of fundamental frequency @w=4.713 rapidly. This numerical result coincides
very well with the approximate solution given by Egs. (7.3.55) and (7.3.57), where
a—17.73 and w—3n/2~4.713 with an increase of time.

2F 80
a. t=0 b.
40}
%0
N 1<0
-2t t<0
40|
-4 . . . -80 . . N
2 -1 0 1 2 20 -10 0 10 20
X

X

Fig. 7.3.3. Two trajectories of system when 7=1; a. a trajectory approaching equilibrium,
b. a trajectory approaching limit circle

It should be emphasized that the Duffing oscillator with strong negative feed-
back of delayed velocity always exhibits a periodic motion for appropriate initial
condition even if the time delay is very short. However, the approximate system
on the basis of Taylor expansion in Section 5.3 does not keep this property.

One may wonder how the system behaves when 7>7,,=6.132 since the system
equilibrium in this case is unstable. As discussed in Subsection 7.3.2, the unstable
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equilibrium may still bifurcate an asymptotically stable periodic motion. However,
the basin of attraction of the bifurcating periodic motion may be very small, and
falls into a “narrow” subspace of the Banach space C[—7, 0]. The numerical inte-
gration from a great number of initial conditions often fails to capture the periodic
motion. For instance, Fig. 7.3.4 gives the time history and Fourier spectrum of a
motion when 7=6.2. They look quite chaotic. To confirm the chaotic feature be-
hind the motion, a Poincaré section was introduced in the case study as following

2= {(x,fc)' x is local maximum}, (7.3.59)

and the steady state motion was recorded on the Poincaré section in Fig. 7.3.5.
Undoubtedly, this is a typical Poincaré section of strange attractor.
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D 00 01 02 03 04 05

Frequency (Hz)

Fig. 7.3.4. Time history and FFT spectrum Fig. 7.3.5. Chaotic attractor on the Poincaré
of a chaotic motion when 7=6.2 section when 7=6.2

7.4 Periodic Motions of a Forced Duffing Oscillator with
Delayed Feedback

The objective of this section is to show how to analyze the periodic motions of
non-autonomous nonlinear systems with a time delay through an illustrative ex-
ample, a harmonically forced Duffing oscillator with linear delayed state feed-
back. As discussed in Subsection 1.1.1, the delay differential equation of concern,

after re-scaled, can be written as
¥(1)42¢ %(1)+x(t)+ 10 () =ux(t—7)+vx(t—7)+ fcosit (7.4.1)

Forsimplicity,-the study.is-confined.to the case of small damping, weak cubic
nonlinearity and weak state feedback. That is,
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C=0(s), u=0(), u=0(¢), v=0(¢), (7.4.2)

where O<e<<l. In what follows, the primary resonance and 1/3 subharmonic
resonance of Eq. (7.4.1) will be studied respectively by using the method of multi-
ple scales.

7.4.1 Primary Resonance

The primary resonance of Eq. (7.4.1) always occurs when A=1 even though the
amplitude of excitation may be very small. That is,

f=0(¢), A=l+eo, (7.4.3)

where o=0(1) is the detuning frequency. In this case, Eq. (7.4.1) becomes
X(O)+x(t)=-28(t)— 10 (1) +ux(t—7)+vx(t—7)+ feos(l+eo)t . (7.4.4)

Now, we look for an expansion of two scales for the solution of Eq. (7.4.4)
x()=x,(T,,T))+e&x,(T,,T))+0(*), T.=g"t, r=0,, (7.4.5)

Substituting Eq. (7.4.5) into Eq. (7.4.4) and equ'ating the same power of ¢, and
the same order quantities as well, we obtain a set of linear partial differential

equations
D;jxo (Ty,T)+xo(Ty,T,)=0, (7.4.62)
e[ Dy x, (T, T, )+, (T, T1)]=~26Dy Dy x4 (Ty 1)~ 24Dy X, (T Ty) (7.4.6b)
— g5 (Ty T )+ uxy (Ty ~ 7,1, )+vDyxo (Ty —7,T; )+ f cos(T, +0T, ),
where the differential operators D, and D, are defined in Eq. (7.3.44).
Solving Eq. (7.4.6a) for x,(7,,T;), we have
x,(T,,.T))=A(T))e™ +cc, (7.4.7)
where cc denotes the conjugate term and
A(T, )E%a(TI e (7.4.8)

Substituting Eq. (7.4.7) into Eq. (7.4.6b) yields
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D x,(Ty,T)+x,(T, . T,)=-2ieD, Ae™ -2i{4e™™
— (A2 4347 4™ )+ue* 4e™ +ive T 4™ (7.4.9)
f iaTleiTo

+¢ +cc.
2

To eliminate the secular term in Eq. (7.4.9), let
—i(2eD, +2¢ —ve ") A+ude™ —3ud’ A +§eiﬂ‘ =0. (7.4.10)

By substituting Eq. (7.4.11) into Eq. (7.4.10) and separating the real part and the
imaginary part, we obtain a set of autonomous differential equations that govern
the amplitude «(7;) and the phase ¢(7})

2eD,o=—(24 +usint—vcost)a+ fsing,

3u

2c‘?leDl(0=(260'+ucosz'+vsinr)oz—7a3 + fcosp, (7.4.11)

where

o(T,)=0T, - B(T,). (74.12)

(1) Steady state primary resonance

From Eq. (7.4.11), we have a set of algebraic equations for the amplitude & and
the phase ¢ of the steady-state primary resonance by setting D,a=0 and D =0

—(2¢ +usint—veost)a+ fsing=0,

(2/1—2+ucosz’+vsinr)o‘z—}fo?3 + fcosp=0, (7.4.13)

whereby we derive the frequency response relation between & and A, and that
between ¢ and A

[(2¢ +usint—vcost)? +(2/1—2+ucosr+vsinr—37/1612)2]0}2 —-f*=0,
24 +usint—veost

2/1—2+ucosr+vsinr—37ﬂ&2

o (7.4.14)

tang+

Given a specific value of &, it is easy to solve the first equation in Eq. (7.4.14) for
A, and then obtain ¢ from the second equation. Hence, we have the first order
approximation of the steady-state primary resonance
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x(t)=acos(At—@)+0(¢) . (7.4.15)

Figure 7.4.1 shows the frequency-amplitude relations of the primary resonance for
the uncontrolled system, the controlled system without time delay, and the con-
trolled system with different time delays, respectively.

6l ——uv=20
=0
—-——=7=1/4
4t 7/ - Unstable
......... r=n .
a .
2 Turning
~—— point

. Stable

1.5 2.0
A

Fig. 7.4.1. Amplitude of frequency response of the primary resonance at different time de-
lays when ¢'=0.05, u=0.05, f=0.5, u=0 and v=0 (or #=0.1 and v=-0.1)

(2) Stability analysis

To analyze the stability of the steady-state primary resonance, we linearize Eq.
(7.4.11) at (&, @) with respect to & and ¢

2eD, Aa=—(2¢ +usint—veost)Aa+ fcospAp,

2&D,A¢:—(37'u&2 +—Z—;—cos¢)Aa——];sin¢rA(p. (7.4.16)
The characteristic equation of Eq. (7.4.16), thus, reads
—(2{ +usint—veost)—2&  fcos@
det —(3—#d2+7fz—cos¢3) ——f;siné)—z.ss =0. (7.4.17)
2 a a
According to Eq. (7.4.13), we simplify Eq. (7.4.17) to
(&5)* +2a(ss)+b=0, (7.4.18)
where
u. v
a={ +—sinT—cosT,
22 (7.4.19)

b=y Al cosesing—rea Y AL cost+Lsint—E G ?).
2 2 2 8 22 8
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The Routh-Hurwitz criterion indicates that the steady-state vibration is asymptoti-
cally stable if and only if the following two inequalities hold simultaneously

a=¢ +Zsin r—vcosr>0,
22 (7.4.20)

b=(£)2 +(l—l+ﬁcosr+zsinr—3—ﬂo}2) ( A-1+2cosr+Lsinz ou a)>0.
2 2 2 8 2 2 8

The first condition in Eq. (7.4.20) is independent of the nonlinearity, the resonance
amplitude and the excitation. As a matter of fact, it serves as the stability condition
for the free vibration of the linear system with delayed state feedback. Letting

j—“:ﬁcosr+1sinr=0 , (7.4.21)
T

we obtain an infinite number of time delays
r =tan" (-Ly4rm,  r=012... (7.4.22)
v

at which a arrives at the extreme values

Vu?+v? Vul+v?
—

A pin =§——2—, A =G+ (7.4.23)
This implies that if the feedback gains are so small that vu?+v? <2¢, the stability
of the free vibration of the linear system is independent of the time delay in the
state feedback. This condition carries the same information as Eq. (3.1.33) if the
higher order terms such as v*, £*and v3{? are neglected there.

By calculating the condition d4/d@=0, we can readily find that the critical ca-
se of b=0 corresponds to the turning points in Fig. 7.4.1. Thus, the stability of the
primary resonance of the Duffing oscillator with delayed state feedback is qualita-
tively the same as that of the Duffing oscillator free of time delay. When the time
delay yields Eq. (7.4.21), the second condition in Eq. (7.4.20) becomes
Vul+

2

2
LRG| 3§‘d2)(ﬂ—1 9:dz)>o. (7.4.24)

b=(C+

(3) Amplitude peak and equivalent damping
Substituting Eq. (7.4.23) into the first equation in Eq. (7.4.14) yields

[(2¢ £4u? +17 )2+(2/1—2—3T“022 Y lat-f£2=0. (7.4.25)
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Hence, the amplitude peak of the primary resonance reads

6 —— S (7.4.26)

max_2§i\/u2+v2

This implies that if the time delay is appropriately chosen so that
A=A =¢+Vu?+v2 /2, the amplitude peak can be reduced to a minimum by the
state feedback. On the other hand, the state feedback will greatly increase the am-
plitude peak if the time delay makes a=a,;, ={—-+vu?+v? /2. This property en-
ables one to design an appropriate time delay in the state feedback in order to en-
hance the control performance.

It is interesting that the quantity g defined in Eq. (7.4.19) plays a role of the
damping ratio in the harmonically forced Duffing oscillator. That is, it governs not
only the stability of the resonance, but also the amplitude peak of the primary
resonance. For simplicity, we refer to a as the equivalent damping ratio of the
system with delayed state feedback. For the case shown in Fig. 7.4.1, the equiva-
lent damping ratios at the time delay r=m/4~0.786 and r=n~3.142 are

a=a,,,~0.1207 and a=a,;, =0, respectively. The corresponding peaks of the

displacement amplitude reach the minimum and the positive infinity, respectively.
Furthermore, when @ happens to vanish, the system response will include the free
vibration that does not decay. This may result in a quasi-periodic motion if the
frequency ratio of the free vibration and the forced vibration is not a rational num-
ber. Anyhow, this case should be avoided from the viewpoint of vibration control,
for the critically stable response is very dangerous.

Now we consider the case of negative velocity feedback, i.e., v<0, which is
widely used to reduce the steady-state vibration in engineering. In this case, Eq.
(7.4.22) gives 7,=rn since u=0 . The optimal control performance, hence, can be
realized only when there is no time delay or there is a long time delay, say, 7=2=n
in the velocity feedback. If displacement feedback is introduced, we have the fol-
lowing linear approximation of Eq. (7.4.19) for a short time delay

M+u T

a={+
¢ 2

+o(7) . (7.4.27)

This implies that the control performance can be better than the optimal one of the
velocity feedback only, if the displacement feedback gain u is positive.
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Fig. 7.4.2. Relations between ratio a/¢ and delay 7 at various feedback gains # and v;
Key: thick solid: |u|=|v|=2¢ , thin solid: |u]=4¢, [v|=¢ , dashed: |y|=¢, [v|=44

Figure 7.4.2 shows the variation of ratio a/¢ with an increase in time delay 7
under different combinations of the feedback gains. It is easy to see from Fig.
7.4.2 that the equivalent damping ratio is optimal when the feedback gains satisfy
u>0 and v<0, because it is the largest when the time delay is short, and de-
creases to zero at a relatively long time delay. This shows again that the positive
displacement feedback will improve the vibration control performance of the
negative velocity feedback.

7.4.2 1/3 Subharmonic Resonance

As well known, a harmonically forced Duffing oscillator may undergo a 1/3 sub-
harmonic resonance when the excitation frequency is near the tripled fundamental
natural frequency of linearized oscillator and the excitation amplitude is large
enough. This subsection will show that a harmonically forced Duffing oscillator
underslinearsstatesfeedbackswithstimesdelay may also have a 1/3 subharmonic
resonance if some conditions hold.
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To study the 1/3 subharmonic resonance of the controlled system, we confine
ourselves to the case when

A-3=g0, o=0(), (7.4.28)
but release the excitation from the small magnitude. Rewrite Eq. (7.4.1) as
¥(O+x(0)==2¢ X(t)— 106> () +ux(t—7)+vi(t—7)+ feos(3+eo)t . (7.4.29)
Substituting Eq. (7.4.5) into Eq. (7.4.29) and equating the same power of ¢, as
well as the same order quantities, we obtain
D3 xo (T, 1)+, (T, T, )= feos(3T, +0T,) (7.4.30a)
E[Dgxl (To, 1) +x, (T, 1)) ]==2D, Dy xo (T4, T, )= 26Dy xo (Ty . T, )
— oo (T, T, ) +uxy (T, = 7,1, )+vDyx, (T —7,T). (7.4.30b)
By solving Eq. (7.4.30a) for x,(7,,T;), we have

f
20-2%)

xo (T, T )=A(T )e'™ +Ge'CT*) ycc,  G= (7.4.31)
0 0°%1 1

Substituting Eq. (7.4.31) into Eq. (7.4.30b) yields
(D3 x (T, ) +x,(Ty,T))]
=(-2ie D, A-21lA-6pAG* -3 A’ A+ue™ A+ive™ A)e'™ (7.4.32)
_3#22Gei(r0+am + ..
The secular term of Eq. (7.4.32) vanishes if and only if
(2D, A+2¢A—ve ™ A)—ue T A+6uAG* +3ud> A +3pA*Ge' =0 . (7.4.33)

Substituting Eq. (7.4.8) into Eq. (7.4.33) and separating the real part and the
imaginary part, we obtain a set of autonomous differential equations governing the
amplitude and phase of the 1/3 subharmonic resonance

2

3uGa

2¢ Dia=—(24 +usint—vcost)a— sing,

(7.4.34)

2£Dl¢=(280'+3ucosr+3vsinr—18,uG2)—9T’ua

where

#(T;)=0T, -3 5(T;). (7.435)
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(1) Steady state subharmonic resonance

From Eq. (7.4.34), we get a set of algebraic equations that governs the amplitude
& and the phase ¢ of the steady-state 1/3 subharmonic resonance
~2
2¢ +usin1—vcosr)d=~3lusin¢,
2 (7.4.36)

IuGa

(2A—6+3ucost+3vsinr—18uG? )—97#0?2 = cos@,

whereby we have the frequency response relation between & and A, and that
between ¢3 and 4

9(2§+usinr—vcosr)2+(2/1—6+3ucosr+3vsinr—18#G2—9—fd2)2
9,UGd 2
—“==5)=0, (7.4.37)
tan y,; } 3(2£+usint—vcosT) 0.

2A—6+3ucost+3vsint—18 4G —97#0? ?

The first order approximation for the steady-state 1/3 subharmonic resonance
reads

x(0)=acos( A—¢ )+—Z—Z—COSJJ . (7.4.38)
3 1-4
We can expand the first equation in Eq. (7.4.37) as
a*-2Pa*+0=0, (7.4.39)
and solve it for &
Q=4 PE[P* -0, (7.4.40)
where

Ps9i(2l——6+3ucosr+3vsinr)—6G2,
U

16

0=—-—+9(2 +usint—vcosr)’ (7.4.41)
8lu

+(2A4—6+3ucosr+3vsint—18uG*)?].
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Equation (7.4.40) requires P>0 and P?>>Q since 0>0. Substituting Eq. (7.4.41)
into these inequalities gives

278 G <(/1—3+3—ucosr+%vsinr),

63u ., 3u 3v .,
——G* —(A-3+—cosrt+—sint
‘ 2 ( 5 CosT+ ) (7.4.42)

S\/(/I—3+37ucosr+%sinr)2 —63(C+%sinr——;—cosr)2 .

It is easy to prove that the second inequality covers the first, and hence gives the
existence condition of the 1/3 subharmonic resonance. We can readily convert this
condition into the form with respect to the dimensionless excitation amplitude f
and excitation frequency A .

Figure 7.4.3 shows the existence regions of the 1/3 subharmonic resonance on
the plane of (A4, f) for the uncontrolled system, the controlled system without
time delay, and those with time delays corresponding to a=a,, and a=~0, re-
spectively. Figure 7.4.4 gives the frequency-amplitude relations of the 1/3 sub-
harmonic resonance for these systems subject to the same level of excitation. Ob-
viously, the equivalent damping ratio governs the threshold of the excitation
amplitude and frequency for the occurrence of the 1/3 subharmonic resonance, so
does the time delay. However, it is not so effective to reduce the amplitude of the
1/3 subharmonic resonance as in the control of primary résonance by choosing a
proper time delay.
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Fig. 7.4.3. Amplitude and frequency of threshold excitation at different time delays when
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