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Preface 

Recent years have witnessed a rapid development of active control of various 
mechanical systems. With increasingly strict requirements for control speed and 
system performance, the unavoidable time delays in both controllers and actuators 
have become a serious problem. For instance, all digital controllers, analogue anti­
aliasing and reconstruction filters exhibit a certain time delay during operation, 
and the hydraulic actuators and human being interaction usually show even more 
significant time delays. These time delays, albeit very short in most cases, often 
deteriorate the control performance or even cause the instability of the system, be­
cause the actuators may feed energy at the moment when the system does not need 
it. Thus, the effect of time delays on the system performance has drawn much at­
tention in the design of robots, active vehicle suspensions, active tendons for tall 

buildings, as well as the controlled vibro-impact systems. On the other hand, the 
properly designed delay control may improve the performance of dynamic sys­
tems. For instance, the delayed state feedback has found its applications to the 
design of dynamic absorbers, the linearization of nonlinear systems, the control of 
chaotic oscillators, etc. 

Most controlled mechanical systems with time delays can be modeled as the 
dynamic systems described by a set of ordinary differential equations with time 
delays. Finite as the number of unknowns in the ordinary differential equations is, 
the time delay implies that the change of a system state depends on the previous 
history of system. The solution space of such a set of delay differential equations, 
hence, is of infinite dimensions. This gives rise to a tough problem to the theoreti­
cal analysis of delayed dynamic systems. Over the past decades, numerous 

mathematicians have made great efforts to study the existence of solution, the os­

cillation property, the stability and the local bifurcation for delayed dynamic sys­
tems mainly in the frame of functional differential equations, and published a 
number of excellent monographs. Among them, the books such as (Hale 1977), 

(Qin et al. 1989), (Gopalsamy 1992), (Kuang 1993), (Hale and Lunel 1993) and 

(Diekmann et al. 1995) are a few to name. 
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From the viewpoint of an engineer, however, less attention has been paid to the 

practical problems associated with delayed dynamic systems, such as the model­

ing and parametric estimation, the stability analysis when some system parameters 

are to be designed, the dynamic performance of nonlinear delay systems, and so 
forth. Except for the works by (Stepan 1989) and (Moiola and Chen 1997), few 

monographs have been available for the engineers, who deal with various prob­
lems of control coming from mechanical engineering. 

Motivated by the dynamics of controlled elastic structures, active vehicle sus­
pensions and four-wheel-steering vehicles, the authors have been engaged in the 
dynamics of high dimensional mechanical systems with feedback time delays 

over the past five years. Summarized in this monograph are mainly recent ad­

vances of authors in the system modeling and simplification, the stability analysis 

of linear dynamic systems, the periodic vibration and bifurcation analysis of non­
linear dynamic systems, as well as the application of new approaches to controlled 

elastic structures and ground vehicles. The contents of the book are organized as 

following. 

In Chapter 1, the models of a number of typical dynamic systems with time 

delays are presented first. Then, two parametric estimation techniques are given 

for the linear systems with short feedback time delays and the nonlinear systems 
with arbitrary feedback time delays, respectively. Afterwards, the identifiability 
problem of delayed dynamic systems is addressed. 

Chapter 2 serves as an introduction to the theory of delay differential equations. 
It begins with the theorem of existence and uniqueness of a solution of initial val­
ue problem, and then outlines the fundamental properties of linear delay differen­
tial equations. Afterwards, it turns to the stability analysis of delay differential 

equations, offers a brief review for the important concepts and available methods, 

such as the Pontryakin theorem, the Hassard theorem, the Michailov criterion and 

the Nyquist diagram, with help of a number of illustrative examples. 

The topics of Chapter 3 are the delay-independent stability of high dimensional 

linear systems with multiple time delays and the stability switches of high dimen­

sionallinear systems with an increase of a single time delay. Those high dimen­

sional systems may have a number of parameters to be designed so that the stabil­

ity analysis becomes a tough problem. On the basis of generalized Sturm theory, a 

simple, but systematic approach is presented to solve the tough problem. The ap­

proach is demonstrated through the stability analysis of a tall building model 

equipped with an active tendon, a quarter-car model of vehicle with an active sus­

pension, as well as a four-wheel-steering vehicle with driver's delay. 
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Preface IX 

Chapter 4 is devoted to the interval stability of high dimensional linear systems 
with a number of commensurate constant time delays. Based on the well-known 
edge theorem and the method of Dixon's resultant elimination, a new approach is 
presented for testing the interval Hurwitz stability of a non-polytopic family of 

quasi-polynomials. To demonstrate the approach, the interval Hurwitz stability is 

analyzed for a single-degree-of-freedom system with two commensurate time de­

lays in the paths of displacement and velocity feedback, respectively. 
In many applications, the time delays are much shorter than the shortest period 

of system vibration. If this is the case, the approximate approaches are preferable. 

Several approaches to the stability estimation are presented in Chapter 5, on the 
basis of perturbation of eigenvalues, for high dimensional linear systems with a 

short time delay in feedback. A criterion of interval stability is suggested by ap­
plying the Pade approximation to the exponential terms of time delay in the char­

acteristic function of a linear system. In engineering, it is very natural and popular 

to simplify the controlled systems with a short time delay by replacing the delayed 
terms with their Taylor expansions. A detailed analysis in Chapter 5, together with 

the examples of both linear and nonlinear systems of single degree of freedom, in­

dicates that this simplification must be implemented with great care. 

From Chapter 6, the book turns to the nonlinear dynamics of controlled systems 

with time delays. To study the nonlinear dynamics of a system effectively, the 
mathematical model for the system should be as simple as possible. In Chapter 6, 

the theorem of central manifold and the theory of normal form are introduced first. 

Then, the central manifold theory is combined with the singular perturbation tech­
nique to simplify the nonlinear delay systems composed of a soft component and a 
rigid component. A typical example of this system is the quarter car model of ve­
hicle with an active suspension. 

For a nonlinear dynamic system, the periodic motion is usually the second most 
important topic, following the stability of equilibrium positions. Physically 
speaking, there are two important causes for the emergence of a periodic motion if 

the system is nonlinear. One is the well-known Hopfbifurcation at the equilibrium 

of an autonomous system, and the other is the either external or parametric peri­

odic excitation in a non-autonomous system. In Chapter 7, the periodic motions 

owing to the two causes are discussed in detail. With help of the theory of the 

Hopf bifurcation, the periodic motions and their stability of an autonomous dy­

namic system under delayed control can be determined. Furthermore, if the gains 

of delayed feedback can be scaled as small parameters, the method of multiple 

scales can easily be used to analyze the dynamics of systems. In the case of strong 

feedback involving time delays, numerical analysis becomes a possibly unique, 
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X Preface 

but useful tool. The chapter presents a numerical approach to locate the periodic 

motion of nonlinear systems with a time delay. 

In Chapter 8, the delayed control of nonlinear systems is outlined. As an exam­
ple, the delayed resonator with velocity feedback is presented first to work as a vi­

bration absorber. Then, the stabilization to a critically stable system is presented. 
Finally, controlling chaos, an interesting topic in the past two decades, is dis­

cussed through an example of the forced Duffing oscillator with delayed feedback. 
The first author appreciates very much the kind host of Professors E. H. Dowell 

and L. N. Virgin to his sabbatical of 1996 in The Department of Mechanical Engi­

neering and Material Science, Duke University, where he began to pay attention to 

the dynamics of mechanical systems with delayed control. Most results presented 

in this book come from the later projects supported in part by the National Natural 
Science Foundation of China under the Grants 59625511 and 19972025, and in 

part by the Ministry of Education under the Grant GG-130-10287-1593. The 

authors wish to acknowledge all of the help and encouragement they have re­

ceived in the development of this book. Special thanks should be due to Dr. H. L. 

Wang and Dr. W. F. Zhang, who carefully read the manuscript of the book and 
made invaluable suggestions. 

Haiyan Hu and Zaihua Wang 
Nanjing, March, 2002 
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1 Modeling of Delayed Dynamic Systems 

Time delays may come from the retardation of either a controller or an actuator in 

controlled mechanical systems. In many cases, it is possible to establish the 

mathematical model for controlled mechanical systems with time delays from the 

principles of mechanics and the theory of control. However, this is not always the 

case. For a great number of practical systems, it is necessary to establish the model 

on the basis of experimental data. For instance, it would be impossible to establish 

the model for the retardation of human being ifno experiments were made. 

This chapter starts with a number of mathematical models for the controlled 

mechanical systems with feedback time delays to be studied in this book. Then, it 

presents two approaches to the parametric identification, including the estimation 

of time delays, of linear and nonlinear delayed dynamic systems respectively on 

the basis of experimental measurements, together with illustrative examples. As 

the identification of time delays is a tough problem, the chapter outlines the identi­

fiability of time delays in some simple cases. 

1.1 Mathematical Models 

1.1.1 Dynamic Systems with Delayed Feedback Control 

(1) Linear dynamic systems 

The simplest physical model for controlled mechanical systems is a linear, time 

invariant system of single degree of freedom as shown in Fig. 1.1.1. The equation 

of motion of this system reads 

mx(t) +cx(t) +kx(t) = f(t)+ g(t) , (1.1.1) 

where the dot represents the derivative with respect to time t, x(t) the displace­

ment of system, f(t) the external force, g(t) the control force, m>O the mass 

coefficient, c~O the damping coefficient and k>O the stiffness coefficient, re­
spectively. 



www.manaraa.com

2 1 Modeling of Delayed Dynamic Systems 

Fig. 1.1.1. A single degree of freedom system under feedback control 

To improve the dynamic performance of the system, the control force g(t) is 

often designed as a linear state feedback as following 

g(t)=ux(t)+vx(t) , (1.1.2) 

where u and v are constants, representing the feedback gains of displacement 

path and velocity path, respectively. Because of unavoidable time delays in both 

controllers and actuators, the actual control force should be modeled as 

(1.1.3) 

where .1 and .2 are the time delays in the paths of displacement and velocity 

feedback, respectively. Thus, Eq. (1.1.1) becomes 

mi(t)+ci"(t)+kx(t)=UX(t-.I )+VX(t-.2 )+ I(t). (1.1.4) 

In control engineering, the above dynamic equation is often cast as a set of ftrst 

order differential equations with time delays, by using a state vector y=[x X]T, 

as following 

(1.1.5) 

where 

Ao=[_k~m _cl/mJ. AI=[u~m ~J. A2=[~ v~mJ. f(t)=[f~t)l (1.1.6) 

A more general form of Equation (1.1.5) reads 

/ 

y(t)= LAky(t-1'k)+ I(t), YER n , (1.1.7) 
k=O 

where 0<1'1 <"'<1'/ are a set of time delays. This is a widely used model for linear 

systems in control engineering. 
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An example of Eq. (1.1.7) is the truncated modal equation of a tall structure 
equipped with active tendon, which is a new technique in structural control. As 
shown in (Zhang et al. 1993), the whole system can be modeled as a three­

dimensional linear delay differential equation 

(Ll.8) 

The first two differential equations in Eq. (Ll.8) govern the fundamental modal 

state of tall structure, while the third one governs the output of hydraulic actuator 

according to the modal state feedback. Here, YI and Y2 represent the fundamental 
modal displacement and velocity, Y3 the control force, J(t) the external force, 

mn >0 the fundamental natural frequency, ,>0 the corresponding damping ratio, 

a>O the time constant of hydraulic actuator, fJ and r the feedback gains ofmo­
dal displacement and modal velocity, r l >0 and r 2 >0 the time delays caused 

mainly by the hydraulic actuator, respectively. Equation (1.1.8) can be written in 

the form of Eq. (1.1.7) with 

-1 , AI: 0 0 0 , A 2 : 0 0 0 , J(t): J(t) . (1.1.9) o ] [ 0 0 0] [0 0 0] [ 0 ] 

-a fJ 0 0 0 rOO 

(2) Nonlinear dynamic systems 

In practice, a great number of dynamic models of controlled mechanical systems 
are nonlinear by nature. The nonlinearity may come from the flexible components 
undergoing large deformation, the backlash and the friction in the interface of two 
components, the saturation of controllers and actuators, and so on. 

A simple, but widely used model for the nonlinear dynamic systems with de­

layed state feedback is the Duffing oscillator governed by 

mi(t)+ci(t)+kx(t)+ pkx3 (t)=ux(t-r)+vx(t-r)+ Jocosmt , (1.LlO) 

where p*O characterizes the cubic nonlinearity, while other system parameters 

are similar to those in Eq. (Ll.4). This model, for instance, can be used to de­

scribe the single mode dynamics of a slender beam or a flexible plate with a pie­

zoelectric pad equipped for vibration reduction when the beam or the plate under­
goes a large deflection. 
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Because of the complexity of nonlinear dynamic analysis, the mathematical 

model of a nonlinear system should be as simple as possible. Hence, Eq. (1.1.10) 

is often re-scaled before the analysis. For example, the time t and the time delay 
r in Eq. (1.1.10) can be replaced, owing to m>O and k>O, with the dimension­

less ones 

(1.1.11) 

such that Equation (1.1.10) is recast as 

x(t)+2( x(t)+ X(t)+,ux3 (t)=ux(t-r)+vx(t-r)+ fcosAi , (1.1.12) 

where the dot represents the derivative with respect to the new time t, whereas all 

the parameters in Eq. (1.1.12) are also scaled to dimensionless ones as following 

(=2~' f=~, A=o)~' u=~, v=k· (1.1.13) 

Compared with Eq. (1.1.10), the number of system parameters in Eq. (1.1.12) has 

been decreased by two. 

In vehicle engineering, the active control of vibration has found its application 

since 1980's when a number of contradictive requirements of performance, such as 
the ride comfort, suspension space and contact force of tires, should be met 
simultaneously for various road profiles. The active suspension compensates the 

motion of vehicle body through the use of hydraulic actuators and controllers. Ac­
cording to the design of load distribution, it is reasonable to look at the so-called 
quarter car model for the vertical vibration of active suspensions as shown in Fig. 
1.1.2. In this model, the nonlinearity of tires is often taken into account so as to 

describe the system dynamics properly. 

Fig. 1.1.2. A quarter car model of active suspension 
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The equation of motion of the quarter car model yields 

{
mbx(t)+cS [X(t)- y(t)]+k, [x(t)- y(t)]+ g = 0, 

mji(t)+c, [y(t)- x(t)]+ks [y(t)- x(t)]+ It (y(t)-z(t))- g = 0, 
(1.1.14) 

where x represents the vertical displacement of vehicle body with mass mb , Y 
the vertical displacement of the unsprung mass m" z the road disturbance, ks ~O 
and CS ~O the coefficients of stiffness and damping of the suspension, It (-) the 

restoring force of tire, which is a nonlinear function in the relative displacement 

y-z. 
The simplest control strategy for active suspensions is based on the concept of 

sky-hook damper. That is, the control force should like the restoring force of a 

linear dashpot between the vehicle body and an imagined fixed frame such that 

g=vx(t-r) , (1.1.15) 

where v is the feedback gain and r is the time delay owing to the controller and 

the hydraulic actuator. In some studies, Eq. (1.1.15) has been generalized to 

g=ux(t-r)+vx(t-r) . (l.1.16) 

Substituting Eq. (1.1.15) or Eq. (l.1.16) into Eq. (1.1.14) gives a set of nonlinear 

delay differential equations. 

As done in (Palkovics and Venhovens 1992), the quarter car model of active 

suspension can be further simplified to a forced Duffing oscillator if the unsprung 

mass, compared with the mass of vehicle body, is relatively small enough and can 

be neglected. In addition, the number of system parameters can also be reduced by 

re-scaling procedure. 

An important feature of nonlinear dynamical systems is their possible chaotic 

outputs under deterministic inputs. To remove or utilize the chaotic motions of 

nonlinear systems, many active control strategies have been developed. Among 

them, the delayed linear feedback has proved itself a very powerful tool, see Sec­

tion 8.3. The nonlinear systems equipped with this control should be certainly 

modeled by nonlinear delay differential equations. 

1.1.2 Dynamic Systems with Operator's Retardation 

If a dynamic system includes any interaction between a man and a machine, the 

retardation of operator has to be taken into account in the dynamic analysis when 

the time delay in retardation is not much shorter than the fundamental period of 
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machine. A well-known example is the steering dynamics of a vehicle at high 

speed. To deal with this sort of problems in later chapters, the mathematical model 

of a four-wheel-steering vehicle, or 4WS vehicle for short, is established here with 

the time delay in driver's response taken into consideration. 

The vehicle model shown in Fig. l.l.3 includes a symmetric rigid body of mass 

m with two identical front wheels and two identical rear wheels. It is moving at a 

constant speed U. To study the steering dynamics of the vehicle moving at a con­

stant speed, only the lateral and yaw dynamic equations of vehicle should be con­

sidered, while the longitudinal dynamic equation can be neglected. 

a. b. total 
velocity 

Fig. 1.1.3. A simple model for four-wheel-steering vehicles; a. vehicle in a fixed frame of 
coordinates, b. zoom view of a front wheel 

Let G denote the center of mass, where a coordinate frame fixed on the vehicle 

body originates. The lateral velocity V and the yaw angular velocity r of the ve­

hicle yield 

{
m(V +rU) = 2FJ costS J + 2Fr costSr , 

Ii = 2aFJ costS J - 2bFr costSr , 
(l.1.17) 

where I z is the inertia moment of rotation of the vehicle body with respect to the 

vertical axis z, a and b are the distances from G to the front and rear axles, tS J and 

tSr are the steering angles applied on the front and rear wheels, FJ and Fr are the 

lateral forces due to the contact between the tyre and the road surface at each front 

and rear wheel. An interesting fact is that the dynamic equations of vehicle are 

independent of the width of vehicle if the vehicle and the road are assumed to be 

symmetric with respect to plane AB. 

The lateral contact force is a function of the physical properties of the tyre and 

the corresponding side-slip angle af or a r observed on the front wheel or rear 
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wheel, respectively. These sideslip angles of wheels can be determined according 

to the simple geometric relations shown in Fig. 1.1.3 as follows 

V+ar 
a f = arctan(--)-8 f' 

U 
(1.1.18) 

The most popular tyre model is the truncated Magic formula proposed in (Pacejka 

1989). Here, the third order truncation of the formula is used 

(1.1.19) 

where C1 , C3 , Dl and D3 are positive parameters. 

Equations (1.1.17), (1.1.18) and (1.1.19) constitute a set of closed differential 

equations in unknown variables V and r to describe the lateral and yaw dynam­

ics of the four-wheel-steering vehicle in the case of open loop. That is, the steering 

angles 8 f and 8, are regarded as the independent input of the vehicle and the 

interaction of driver is not taken into account. 

A popular control strategy is to steer the rear wheels on the basis of a pre­

determined function as below 

(1.1.20) 

There are two versions of this control strategy. One is the following linear strategy 

(1.1.21 ) 

It features that kJ~-b/a<O when U ~O and kJ~aDI/bCl>O when U ~+OO. 
The other version is the bilinear strategy with the coefficients given by 

k 2(aC1-bD1)+mU2 

, 2DP 
(1.1.22) 

An important feature of the bilinear strategy is the constant steering ratio kJ ;<:1. 

The interaction between the driver and the vehicle should be studied in the 

fixed global frame of coordinates (x,y,lf/) as shown in Fig 1. 1.4, where (x,y) rep­

resents G, the mass center of vehicle, in driving and If/ the heading angle ofvehi­

cleo Obviously, the following relation holds 

{~= V COSIf/+U sinlf/, 

If/=r. 
(1.1.23) 
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y 

o x 
Fig. 1.1.4. The geometric relation in Eq. (1.1.24) 

Many models have been proposed to describe the perceptual delay of the 

driver, who senses the deviation from the desired path and steers the vehicle to re­

duce the deviation. The simplest model in (Nagai and Mitschke 1987) reads 

{
y" (t+r,) = y ,(~+r,)-y(t)- ~y(t), 
TsO 1 (t)+OI (t)-KmYe (t-Td)' 

(1.1.24) 

Equation (1.1.24) describes the deviation from the desired path and the retard of 
both driver and steering mechanism, respectively. As shown in Fig. 1.1.4, L repre­

sents the preview distance, Y d the desired lateral displacement, Ye the error be­

tween desired and actual lateral displacement, Ts >0 the time delay of the steering 

mechanism, T p >0 the preview time of the driver, T d >0 the time delay of the 

driver, Km the steering gain, respectively. 

Substituting the first equation in Eq. (1.1.24) into the second one gives a linear 

delay differential equation in steering angle °1 

. L 
TsOI (t)+o/(t)=Km[y d(t-Td)-y(t-T)- U y(t-T)] , (1.1.25) 

where T=Tp+Td>O represents the total time delay of driver's retardation in the 

vehicle-driver system. 

In summary, the motion of the four-wheel-steering vehicle-driver system yields 

a set of non-autonomous delay differential equations in five unknown state vari­

ables (V,r,Y,Ij/,ol) as following 
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y=V COSlj/+USilllf/, (1.1.26) 

Ijt=r, 

. t5f K L 
t5f=---~[y(t-,)+-V(t-,)coslj/(t-,)+Lsinlj/(t-,)]+ J(t), 

's 's U 

where Fr (V,r,t5f ) and Fr (V,r,t5f ) can be determined from Eqs. (1.1.18), 

(1.1.19) and (1.1.20), while 

(1.1.27) 

is regarded as an external excitation in the dynamic analysis. 

1.2 Experimental Modeling 

An important task in experimental modeling of delayed dynamic systems is to de­

termine the time delays. Compared with the coefficients of inertial, stiffness and 

damping, as well as the feedback gains, the time delays should be regarded as the 

special system parameters in experimental modeling. Even for a linear, time in­
variant, delayed dynamic system, the identification of time delays from experi­

mental data is always a tough problem of nonlinear parametric estimations, and 

hence, very sensitive to the noise in the measurements. 

Most previous publications only dealt with the time delays in the input of a 

system. See, for example, (Liang and Christensen 1976), (Elnaggar et a1. 1989), 

and (Ferretti et a1. 1991, 1994). These studies were confined to the case when the 

ratio of time delay to be identified and sampling interval is an integer. To increase 

the accuracy of estimated time delays, the sampling interval should be short 

enough. However, the excessively short sampling intervals may produce the ill­

conditioned problems in identification. Only a few studies were made to identify 

the feedback time delays, mainly the short time delays in linear systems. For ex­

ample, (Tuch et a1. 1994) studied the experimental modeling of a linear, time in­

variant system with short time delays. This section will be devoted to the identifi-
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cation of time delays of both linear and nonlinear delayed systems, as well as the 

identifiability of time delays. 

1.2.1 Identification of Short Time Delays in Linear Systems 

(1) Approach based on frequency response function 

The frequency response function of a linear, time invariant system involves a 

number of delay induced exponential functions, each of which can be approximat­

ed by a truncated Taylor expansion or a rational fraction, such as the Pade ap­

proximation in (Xu 1990). Hence, the frequency response function of the original 

system with time delays can be first approximated as the frequency response 

function of a delay free system of extended order, then the system parameters and 

time delays can be extracted. 

To elucidate the above idea as simple as possible, we consider a linear delay 

system of single degree of freedom governed by Eq. (1.1.4). By performing the 

Fourier transform on both sides of Eq. (1.1.4), we have the frequency response 

function of system 

1 
H«(iJ,'iP 'i2 ) = k . 2 -iWTj· -imT2' 

+lC(iJ-m(iJ -ue -IVwe 
(1.2.1) 

where the conditions u<k and v<c are required for the stability of system free of 

time delays. Substituting the Euler formula for the exponential functions above 

yields 

where 

{
a«(iJ, 'iI' '(2 )=k-ucos(iJ'i1 -v(iJsin(iJ'i2 , 

b( (iJ, 'iI' 'i 2 )=c(iJ+usin(iJ'i1 -V(iJ cos (iJ'i 2· 

(1.2.2) 

(1.2.3) 

If the time delays are short enough, the frequency range of concern yields the 

conditions 0<(iJ'i1 <<I and 0<(iJ'i2 <<I. In this case, the truncated Taylor expan­

sion ofEq. (1.2.3) is 
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122 1 44 133 a(w, , )=k-u(I--w , +-w , +··)-vw(w, --w , + .. ) 
, P 2 2 1 24 1 2 6 2 

2 U 2 W 4 U 4 3 =k-u+w (-, -v, )--(-, -v, )+ ... 21 2 641 2 ' 

133 122 1 44 b(w, , )=CW+U(W, --W , +··)-vw(l--w , +-W , + .. ) 
, I' 2 1 6 1 2 2 24 2 

(1.2.4) 

W 3 u 3 2 W 5 U 5 4 
=W(C+U'I-V)-T("3'1 -V'2)+24(S'1 -V'2)+···· 

Substituting the above equation into Eq. (1.2.2) gives an approximation of fre­

quency response function 

where 

ao=k-u, 

al =C+U'I -v, 
u 2 

a2 =m--'I +V'2' 
2 

u 3 V 2 
a3 =-'1 --'2· 6 2 

(1.2.5) 

(1.2.6a) 

(1.2.6b) 

(1.2.6c) 

(1.2.6d) 

In practice, the parameters m, C and k can first be extracted from a test of 

open-loop system. Then, the frequency response function of the closed-loop sys­
tem is measured and used to fit Eq. (1.2.5) by using the technique of orthogonal 
polynomials so that the coefficients a r , r=O,I,2,3 are extracted. Finally, the pa­

rameters u, V"I"2 can be determined from Eq. (1.2.6) as following. 
The first two equations in Eq. (1.2.6) give 

Substituting these two equation into Eq. (1.2.6c) yields 

(1.2.7) 

(1.2.8) 

(1.2.9) 

By substituting Eqs. (1.2.7), (1.2.8) and (1.2.9) into Eq. (1.2.6d), we have a poly­

nomial equation in the unknown 'I 
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The minimal positive root '] of Eq. (1.2.10) can easily be determined by using 
numerical techniques. Substituting '] into Eqs. (1.2.8) and (1.2.9) gives v and 

'z , respectively. 
The feasibility of this approach is subject to the following three conditions. 

First, the time delays should satisfy 0<0),] «1 and 0<0)'2 «1 in the frequency 
range of curve fitting, usually in the frequency range of a dominant resonance. 
Second, the identification error of coefficients ar , r=0,1,2,3 should be so small 
that Eq. (1.2.10) has positive real roots, or equivalently the following polynomial 
equation of order 8 has at least a pair or real roots 

8 4(c-a]) 6 12(az-m) 4 24a3 2 24a3 (c-a])+12(a2-m)z 
y + y y ---y 0.(1.2.11) 

k-ao k-ao k-ao (k-ao)2 

The conditions for this fact can be derived according to the generalized Sturm 
criterion presented in Subsection 3.2.4. Finally, the stability of a practical system 
requires that the estimated coefficients yield the following inequalities 
ar >0, r=0,1,2,3 , see Subsection 5.3.1. If the system free of time delay is asymp­
totically stable, the first inequality holds. The second and the third inequalities al­
so hold true provided that the time delays are short enough. Owing to the Taylor 
expansion, however, the last inequality a3 >0 requires an extra condition 

u,(-3v,£>0. (1.2.12) 

This is undoubtedly a shortcoming. 
If the feedback gains u and v are known, it is possible to simplify the above 

procedure. From Eqs. (1.2.6b) and (1.2.6c), we have 

{

a] +v-c '] , 

2(~ -m)+u,~ 2u(a2 -m)+(a] +v-c)Z 
'2 2v 2uv 

The corresponding identifiability condition for time delays is 

{
u(a] +v-c»O, 

uv[2u(a2 -m)+(a] +V-C)2 ]>0. 

(1.2.13) 

(1.2.14) 

If the feedback gains are unknown, but ']='2 or ,]=0 (or '2=0) holds true, the 
time delays can be determined from the first three equations in Eq. (1.2.6). 
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Finally, great care should be taken because this approach based on the truncated 

Taylor expansion with respect to short time delays has a number of shortcomings. 

First, the delay free model of extended orders may not be equivalent to the origi­

nal system with time delays. The extra condition in Eq. (1.2.12) is an example. 

Second, the number of parameters to be identified increases with an increase of 

system order. This gives rise to the difficulty of both parametric identification and 

extraction of time delays from the identified parameters. 

(2) Approach based on modal parameters 

Given the feedback gains, time delays can also be extracted from the modal 

parameters of closed-loop system. For this purpose, let Q3 =0 in Eq. (1.2.5). Then, 

the following natural frequency and damping ratio are defined for the system 

having the feedback free of time delays and the system with delayed feedback re­

spectively 

{wn=e, 
( 2~~~:-U)' 

(1.2.15) 

- (1 u 2 V ) OJn = 1----->:;;OJn +-I1 --I2 , 
U 2 4m 2m 

m--I +VI 2 1 2 

(1.2.16) 

k-u 

Equation (1.2.16) can be rewritten as 

(1.2.17) 

Eliminating I2 from Eq. (1.2.17) gives 

( 1.2.18) 

Solving this equation for the minimal positive root I1 and substituting I1 into Eq. 

(1.2.17), we obtain I 2 . 
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This approach has less accuracy than the approach based on the frequency re­

sponse function since the condition a3 =0 is imposed. However, it enables one to 

gain an insight into the effect of time delays on the system dynamics. 

1.2.2 Identification of Arbitrary Time Delays in Nonlinear Systems 

Consider an n-dimensional nonlinear system with delayed feedback 

Mx(t)= f(x(t),x(t),x(t-'I),x(t-'2)'p) , (1.2.19) 

where M eRlfXn is the mass matrix, xeRn the vector of generalized displacement, 

fERn the vector of generalized force, '1 and '2 the time delays in the displace­

ment and velocity feedback, pERI the vector composed of I parameters to be 

identified. If the mass matrix M, the parametric vector p, and the time delays '1 
and '2 are replaced with the identified results 1ft, jJ, TI and T2 , the residual er­

ror vector ofEq. (1.2.19) reads 

(1.2.20) 

To minimize the residual error, it is necessary to know the derivatives of general­

ized displacement x. In order to avoid the numerical differentiation or integra­

tion, the r-th order derivative filter Lr(D) can be introduced to obtain the ap­
proximate displacement vector x f ' the corresponding velocity vector x f and 

acceleration vector x f ' see (Zhang 2002). Thus, the residual error vector can be 

written as 

(1.2.21) 

If an objective function is defmed as 

J= ~~e}ejj , (1.2.22) 

where e jj is the residual error vector at the moment t=t j , the parametric identifi­

cation can be regarded as a problem of minimization for 1ft, jJ, TI and T 2 in a 

given region of parametric space. This is a problem of global optimization with 

possible local optimizations. 

Among the approaches to the global optimization, the Genetic Algorithms, of­

ten abbreviated as GA, have received great attention since 1980's because of their 

advantages superior in numbers. The genetic algorithms are based on the mecha­

nism of natural selection and evolution. They combine the principle of survival of 
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the fittest individual among population with a structured and randomized informa­
tion exchange to form a search algorithm with some of the innovative flair of hu­
man search. 

The genetic algorithm starts from a set of random individuals of population and 

proceeds repeatedly from generation to generation through three basic genetic op­
erators, i.e., reproduction, crossover and mutation, so that the quality of population 

is optimized step by step. Figure 1.2.1 shows the diagram of a typical genetic al­

gorithm. The basic element processed by a genetic algorithm is the string formed 

by catenating sub-strings, each of which is the binary coding of a parameter. That 
is, each string represents a parameter. In what follows, the three basic genetic op­

erators are outlined. 

No 

Set initial 0 ulation 

Reproduction 
(Various principles of selection) 

Crossover (Uniform crossover / 
Non-uniform crossover / Fittest individual kept) 

Mutation (Uniform mutation / 
Non-uniform mutation / Boundary mutation) 

Yes 

Output the optimal individual 

Fig. 1.2.1. A typical genetic algorithm 

Reproduction is based on the principle of survival of the fittest. That is, the fit­

test individuals in the population should be first selected to reproduce their off­

spring. For this purpose, a positive number E j , called the fitness number, is as­

signed to individual j in the population for all j, where a larger fitness number 

implies better fit of individual. In order to select the fittest individuals as the first 

choice, the probability P j in selection is usually defined to be proportional to the 
fitness, say, 
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(1.2.23) 

This way, two individuals with the largest probability will be first selected as a 

couple to reproduce their offspring. 

Crossover is used to generate new individuals so that a new point in the 

parametric set is searched. In practice, two techniques of crossover are often used. 

One is the simple crossover, which exchanges the partial genes of two select 

chromosomes. And the other is the algorithm crossover. That is, the linear combi­

nation of two select chromosomes. The specific operator is to replace the parame­

ters a and b of two individuals with a' and b', satisfying a+b=a' +b' . Nor­

mally, the individual parameters of offspring yield 

{
a'=(1-a)b+aa, 

b'=(I-a)a+ab, 
(1.2.24) 

where aE(O, 1) is a random parameter. In practice, a can be set as a constant or 

a variable. The two cases correspond to the uniform crossover and the non­

uniform crossover, respectively. To avoid missing the optimal individual and to 

increase the convergence, a new crossover operator is suggested as follows. 
Crossover the two parameters of parents, and then keep one of the parents fitter 

than the offspring, as well as the fitter individual of offspring. This operator can 

greatly speed up the convergence, but likely falls into a local optimization. Such a 

shortcoming can be removed by increasing the mutation probability. 

The purpose of mutation is to introduce the genetic diversity into the population 

so that the almost uniform population, or the individuals of small fitness, undergo­

es a change. The mutation makes each new generation keep fresh individuals and 

avoid iteration stopping. The mutation may be uniform or non-uniform, too. The 

non-uniform mutation is as following. Take a random variable N r from the set 

{0,1} and let 

(1.2.25) 

where 8(t,y)=[z(1-tIT)]b y, T is the maximal number of generations, z a ran­

dom variable on [0, 1], b a system parameter, representing the extent of non­

uniformity. The value range of 8(t,y) is [0, y], and 8(t,y)~0 when t~T . 
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To implement the genetic algorithm to minimize J in Eq. (1.2.22), a fitness 

function is introduced as following 

E=max(N-J) , (1.2.26) 

where N is a sufficiently large positive number so that E>O holds true during 

the parametric identification. 

Compared with other optimization algorithms, the genetic algorithm does not 

depend on any gradient information of the objective function, and hence, meets 

the requirement of optimization of non-smooth and even discontinuous objective 

functions. The more important feature of a genetic algorithm is its ability of global 

optimization, because the genetic algorithm searches the best individual among 

the population, rather than a part of individuals, and emphasizes the information 

exchange among all individuals of population. 

The efficacy and efficiency of a genetic algorithm mainly depends on the fol­

lowing choices. That is, the choice of reproduction, crossover and mutation, the 

choice of algorithm parameters such as the population probability, crossover prob­

ability and mutation probability, and the choice of fitness function. In the follow­

ing two examples, several kinds of crossover and mutation were simultaneously 

used so as to improve the efficiency of genetic algorithm. 

Example 1.2.1 Consider the problem of parametric identification of a linear 

delay system of single degree of freedom governed by 

mx(t)+ci(t)+kx(t)=ux(t-r)+vx(t-r)+ f(t) , (1.2.27) 

where m=l.O, c=O.2, k=I.O, u=0.5, v=O.l and r=0.025. In the numerical 

simulation of system response, the excitation f(t) was taken as a chirp sinusoidal 

excitation of unit amplitude, a very popular excitation for the parametric identifi­

cation of linear dynamic systems, within the frequency range O.OI-IOHz. The 

system response was sampled at the rate of 0.02s. In the parametric identification, 

the number of individuals in original population was chosen as 80, and the muta­

tion probability as 0.025. The crossover was taken as the operator of keeping the 

fittest individuals, and the mutation as the non-uniform operator. 

As the first step, the open-loop test was made to identifY the parameters m, c 

and k. Then, the estimated m, c and k were substituted into the closed-loop 

model to identifY the feedback gains and time delay. The convergence of identifi­

cation with respect to the number of iterations is shown in Figs. 1.2.2 and 1.2.3 re­

spectively for different noise levels of measurement. 
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Fig. 1.2.2. Estimated feedback gains and time delay of a linear system when the measure­
ment was free of noise 
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Fig. 1.2.3. Estimated feedback gains and time delay of a linear system when the measure­
ment was contaminated by 5% noise 

Table 1.2.1. Identification results of a linear dynamic system with delayed state feedback 
under different noise levels of measurement 

Parameters m k c u v r 

Search range [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0,0.5] 

Exact value 1.0 1.0 0.2 0.5 0.1 0.025 

Identification 1.00006 1.00009 0.19997 0.50002 0.09983 0.0247 
free of noise 

Identification 0.006 0.009 0.Dl5 0.004 0.17 1.12 
error (%) 

Identification 1.00590 1.00605 0.19605 0.50655 0.10045 0.03836 
at 5% noise 

Identification 0.59 0.61 1.98 1.31 0.45 53.44 
error ~%~ 
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As shown in Table 1.2.1 and Fig. 1.2.2, all the identified parameters ap­
proached the exact values if the sampled data were free of measurement noise. 
However, the identified time delay in Table 1.2.1 and Fig. 1.2.3 greatly deviated 
from the exact value and even had the relative error of 53.44% when only 5% 
white noise was added to the sampled data. The next example will show how to 
improve the applicability of the approach in the noisy case. 

Example 1.2.2 Consider a forced Duffing oscillator with linear delayed state 
feedback. As discussed in Subsection 1.1.1, the equation of motion of the system 
is governed by 

x(t)+ 29'(t)+ x(t)+ f.lX3 (t)=UX(t-1')+vX(t-1')+ /(t) , (1.2.28) 

where ,=0.05, ,u=0.05, u=O.I, v=-O.1 and 1'=0.786. To get the system re­
sponse, which well represents the nonlinear behavior of system under various in­
tensity of excitation, the excitation of white noise with variance 0.1 was used in 
the numerical simulation of system response. The displacements of open-loop 
system and closed-loop system were sampled respectively at the rate ofO.Ols. The 
open-loop parameters, and ,u were first identified and then substituted into the 
closed-loop model. Afterwards, u, v and l' were identified. 

Table 1.2.2. Identification results of a forced Duffing oscillator with delayed state feedback 
under different noise levels of measurement 

Parameter t; J1 u V T 

Search range [0, 1] [0, 1] [0, 1] [-1, 0] [0,5] 

Exact value 0.05 0.05 0.1 -0.1 0.786 

Identification 0.05 0.05 0.09942 -0.1006 0.79997 
free of noise 

Identification 0.00 0.00 0.58 0.60 1.78 
error(%) 

Identification 0.051161 0.04956 0.11236 -0.09152 0.901977 
at 5% noise 

Identification 2.32 0.88 12.36 8.48 14.75 
error 

Identification 0.04826 0.04889 0.11518 -0.08950 0.92899 
at 10% noise 

Identification 3.48 2.22 15.18 10.50 18.19 
error 
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Fig. 1.2.4. Estimated parameters for a forced Duffing oscillator with delayed state feedback 
when the measurements were free of noise and contaminated by 5% noise, respectively 

Similar to Example 1.2.1, the number of individuals in a population was chosen 

as 80, the crossover probability as 0.15, and the mutation probability as 0.075. 

Three case studies were made for the measurements without noise, with 5% and 

10% white noise, respectively. To improve the identification process, several op-
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erators of crossover and mutation, such as the algorithm crossover, uniform and 

non-uniform mutations, were used. Table 1.2.2 gives the identified parameters for 

different cases. Figure 1.2.4 shows the convergence procedure of parametric iden­

tification with an increase of iteration numbers. Obviously, the combination of 

crossover and mutation greatly improved the accuracy of identified parameters. 

For instance, the relative error of identified time delay was reduced from 53.44% 

in Example 1.2.1 to 14.75% when 5% noise was added into sampled data. The re­

lative error of time delay was decreased to 18.19%, an acceptable percentage in 

engineering, even though the sampled data were contaminated by 10% white 

noise. 

1.2.3 Discussions on Identifiability of Time Delays 

As seen in previous subsections, it is not easy to extract the feedback time delays 

from the experimental data for a dynamic system, even for a linear dynamic sys­

tem. A great number of failures in the identification of time delays urge one won­

der whether the time delays in a dynamic system can be identified or not. In this 

subsection, a brief discussion will be made mainly on the identifiability of time 

delays of a linear dynamic system. 

Consider again the frequency response function of a linear delay system of sin­

gle degree offreedom given by Eq. (1.2.5) as following 

where 

{
a(01,TI'T 2 }=k-UCOS01T1 -v01sin01T2 , 

b(01,TpT2 )=c01+usin01T1 -V01COS01T2 . 

(1.2.29) 

(1.2.30) 

Obviously, both a(01,TI,T2) and b(01,T1,T2 ) are real functions in the time delays 

TI and T2 , and has the same period 2n/01. Hence, for any positive integers p 

and q , there exists the relation 

(1.2.31 ) 

A specific case is 
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{ 

2pn 2qn 
a( w,--,--)=a( w,O,O), 

w w 
2pn 2qn 

b(w,-,-)=b(w,O,O). 
w w 

(1.2.32) 

Equation (1.2.31) implies that the identified time delays f] and fz may differ 

from the actual time delays 1'] and l' z by 2 pnl w and 2qnl w if only the har­

monic excitation of frequency w is used in the test. For the system with identical 

time delays 1'] =1' Z , the identified results may yield T] -T z =2(p-q )nl w:;t:O . Equa­

tion (1.2.32) indicates that two distinct time delays T] =2pnlw and Tz =2qnlw 

may even be identified for the system that does not have any time delays at all. As 

a result, it is impossible to extract the time delays properly from the response of 

system subject to a harmonic excitation of fixed frequency. 

Now consider two distinct time delays 1'] and 1'z , as well as the time delays f] 

and f z identified from the experiment. Denote the corresponding frequency re­

sponse functions by H(W,1'],1'z) and H(W,T],fz), respectively. If they both are 

identical, Eqs. (1.2.29) and (1.2.30) lead to 

{

a(W,f],TZ )-a(w,1'] ,1'z) 

=u~ C~SWT] -coswf] )+vw(sinw1' z -sinwf z )=0, 
b(W,1'] ,1'z )-b(W,1'] ,1'z) 

=u(sinwf] -SinWT] )-vw( coswf z -COSW1' z )=0. 

(1.2.33) 

Equation (1.2.33) can be regarded as a set of linear equations in unknowns u and 
vw. The existence of non-zero solution of Eq. (1.2.33) is equivalent to the fol­
lowing necessary and sufficient condition 

(COSW1'] -COSWT])( COSW1' z -COSWT 2) 

+(sinw1'] -sinwTd(sinW1'2 -sinwTz )=0. 

After simple manipulations on triangle functions, we arrive at 

. W(f]-1']) . W(T2-1'2) W[(T]+1'])-(Tz+'l'z)] 
sm sm cos O. 
222 

There follows the solution ofEq. (1.2.35) 

• 2pn 
1']=1']±--, 

W 

• 2qn 
1'2=1'z±--, 

W 

where p and q are positive integers, r the non-negative integer. 

(1.2.34) 

(1.2.35) 

(1.2.36) 

The first two solutions in Eq. (1.2.36) indicate again that the identified time 

delays T] and T2 may differ from the actual time delays 1'] and 1'2 by 2pnlw 



www.manaraa.com

1.2 Experimental Modeling 23 

and 2qnl m. The third solution implies that the identified results may be any pair 
of f[ and f 2 , which yields the last equation ofEq. (1.2.36). 

Now, we look at the comparison of frequency response functions H(m,T[,T2) 

and H (m, f[, f 2) , as well as the amplitude of impedance difference defined as 

LI(m)=~[a(m,f[ ,f2)-a(m,T[ ,T2)f +[b(m,f[ ,f2)-b(m,T[ ,T2)]2. (1.2.37) 

Figure 1.2.5 shows the amplitudes of H(m,O,O) and H(m,4n,6n), and the am­

plitude of corresponding impedance difference. It is obvious that the two frequen­

cy functions are equal at the common values m=I,2,3,.·· for the frequency series 

m=2pn/If[-Tt!=pI2,p=I,2,3,. .. and m=2qn/If2-T21=qI3, q=1,2,3,.··. Thus, it 
is impossible to identify whether or not the system has any time delays from the 

measured frequency response function at those frequencies. 

6 ., 
"t:I 

.-E 4 
i5.. 2 
8 

--H(m,I,O) 

---- H(m,I+41!,41!) 

« OL.....--'-~-'--..........,:::::::::=="== ....... _-'----' 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

1.0 r ~ f\!\ 
~O.5~.V.\ 

0.0 
D.O 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

OJ 

Fig. 1.2.5. Comparison of the frequency response functions H(OJ,O,O) and H(w,47t,67t), 
together with the amplitude of L1( w ) 

15 ., 
"t:I . .e 10 

i5.. 5 
8 « 

--H(m,O,O) 

---- H(m,41!,61!) 

O~~~-'--~===----~--~~ 

,-., 1.00~1 2 3 4 

~ 0.5 
"<1 

0.0 1<...-....Jl,.._....l!...---=.~----1_.:.........-_...L---.:....~---' 
o 2 3 4 

OJ 

Fig. 1.2.6. Comparison of the frequency response functions H(w,I,O) and H(w,I+47t,47t), 
together with the amplitude of L1(w) 
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OJ 10 
~ --H(w,O,O) 

0.. 5 ----H(w,IO,IO) 
E 
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Fig. 1.2.7. Comparison of the frequency response functions H(O),O,O) and H(O),IO,lO), 
together with the amplitude of .1(0)) 
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Fig. 1.2.8. Comparison of the frequency response functions H(O),O,O) and H(0),50,50), 
together with the amplitude of L1(w) 

Similarly, the frequency response functions H(w,l,O) and H(w,1+4n,4n) in 

Fig. l.2.6 are the same when w= pl2, p=1,2,3,.··. This case is also true if the time 

delays are arbitrary real numbers. In Fig. l.2.7, H(w,O,O) and H(w,lO,lO) are 

identical when w=pnI5, p=1,2,3,.··, and so are H(w,O,O) and H(w,50,50) at 

w=pnI25,p=1,2,3,.·· in Fig. l.2.8. 

As analyzed above, the identified time delays TJ and T2 may differ from the 

actual time delays TJ and T 2 by 2 pnl wand 2qnl w, where p and q are two 

integers. If the time delays to be identified are very short, it is easy to exclude the 

misidentified time delays. However, the dynamics of a system with short time de­

lays is often quite close to the dynamics of a delay free system. In this case, the 

identification of short time delays may fail if the experimental data are contami-
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nated by measurement noise. In what follows, the identifiability of short time de­
lays is discussed for the second approach in Subsection 1.2.1. 

From Eqs. (1.2.14) and (1.2.15), the sensitivities of modal parameters of 

closed-loop system with respect to the time delays can be derived 

aOJn OJn V 
--=---a,z 2m' 

a( (u a( (v 
(1.2.38) 

As these sensitivities depend on the modal parameters of system without time de­

lay, it is possible to determine what modal parameter is the best for the identifica­

tion of time delays. For example, it is more difficult to identify 'l than '2 from 
the natural frequency OJn • If the condition 2mu>v(c-v) holds, however, it may 

be easier to identify 'l than '2 from the estimated damping ratio. 
Example 1.2.3 Consider a linear delay system governed by Eq. (1.2.1) with 

following parameters 

m=1.0, c=O.2, k=1.0, u=O.I, v=O.1, 'l =0.2, '2 =0.1. (1.2.39) 

The numerical simulation shows that if the input and output measurements of 

system were free of noise, the identified parameters coincided with the exact 

parameters at the first three digits. However, if the white noise of 1 ~ 5% was 

added to the sampled measurements, the accuracy of identified parameters became 

quite poor. From the experience of using the curve fitting technique of orthogonal 

polynomials, the accuracy of parameters ao and a2 is relatively high since they 

both are related to the natural frequency. However, it is hard to identify an accu­
rate al because it is associated with the modal damping. As a small parameter, the 

identified result of a3 does not have high accuracy, either. 

~ 20 
C 

• .-e 

~ O~--------~~~~--------~ 
..... 
o -20 .... 
o 

.~ -60 

., -80 
~ 

~ -40 ) 

-100~~~~~~-L~-L~-L~~ 

-6 -4 -2 o 2 4 6 
Relative errors of a I and a3 (%) 

Fig. 1.2.9. Relative errors of identified parameters 
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In Fig. 1.2.9, the effect of estimation errors of Q] and Q3 on the accuracy of 

identified time delays is given. The figure shows that only the fitting error of 
about 5% may give rise to the identification error of 80~90%. This indicates once 

more that it is indeed a tough and open problem to identifY the time delays of a 

practical system from experimental data. 

The identifiability of time delays from any nonlinear system is undoubtedly a 

tough problem, and can usually be discussed in time domain. To have a brief idea 

about the identifiability problem in time domain, consider the delayed state feed­
back 

g(t)=ux(t-,] )+VX(t-'2). 

Applying the Lagrange mean value theorem to Eq. (1.2.40) yields 

g(t)=u[x(t)-,]x(t-O,] )]+VX(t-'2), O:<;;O(t):::] . 

(1.2.40) 

(1.2.41) 

Even though OCt) here is not a constant, the experimental data may offer great 

probability of '2 "",O(t),] such that 

(1.2.42) 

If this is the case, the estimated results become 

(1.2.43) 

and totally deviate from the real values. 
In general, the identifiability of dynamic systems with feedback time delays is 

still an open problem no matter whether the systems are linear or not. Neverthe­

less, it is better to keep the problem in mind when estimating the time delays from 
the experimental data or using the estimated time delays in system modeling. 
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This chapter serves as a brief review of some theoretical results of delay differen­

tial equations in the form 

(2.0.1) 

where 0<'1 :S;'2···:S;'/ represent the time delays. The time delays are assumed to 
be constants hereinafter for simplicity, though it may be more reasonable, from the 

viewpoint of practice, to regard them as the functions in time t . 
In addition, the time delays in a differential equation may appear in terms of the 

highest order derivative, for example, 

x(t)=ax(t)+bx(t-,), XER. (2.0.2) 

If this is the case, the delay differential equation is referred to as the neutral type, 
whereas Eq. (2.0.1) is called the retarded type. The delay differential equations of 

neutral type may behave quite different from those of retarded type. For mechani­

cal systems, the displacement feedback and the velocity feedback are more popu­

lar than the acceleration feedback. Hence, the controlled mechanical systems with 
feedback time delays are usually modeled as Eq. (2.0.1), and the delay differential 

equations of neutral type will not be touched with in this book. As a result, the 

terminology "delay differential equation" used hereafter implies the delay differ­

ential equation of retarded type unless any further explanation is given. 
For Eq. (2.0.1), the concepts of linear and nonlinear systems, autonomous and 

non-autonomous systems, orders or dimensions of systems, and so on will be used 
without special defmition. What should be emphasized is that x(t) is not superior 

to any x(t-'j), j=I,2, ... ,1 in Eq. (2.0.1). They should be equally dealt with. 

2.1 Initial Value Problems 

For a dynamic system described by an ordinary differential equation, the state of 

system at any time t can be traced from an initial state at time to if the dynamic 

equation of system is given. However, this is not the case for any system governed 
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by a delay differential equation. To understand this fact, we consider the linear 

system of single degree of freedom with delayed state feedback given by Eq. 

(1.1.4). In the case of identical time delays, the initial value problem correspond­

ing to Eq. (1.1.4) reads 

{mX(~+cX(t)+.kx(~~UX(t-T)+X(t-T)+ f(t), t>to' 

x(t)-¢(t), x(t)-¢(t), tE[to-T, tol. 
(2.1.1 ) 

That is, the initial state of system should be given by a continuous function 

¢(t) and its continuous derivative ~(t) on the interval [to-T, tol in order to de­

termine the state of system when t>to . 
Because T/ is assumed to be the longest time delay in Eq. (2.0.1), the initial 

value problem ofEq. (2.0.1) should be stated as 

{
X(t): !(t,x(t),X(t-Tl),X(t-T2),.··,X(t-T/», xERn, t>to, 

x(t)-¢(t), tE[to -T/,tol, 
(2.1.2) 

where ¢(t)EC==C([to-T/, tol,W) and C represents the Banach space ofcontinu­

ous functions mapping [to-T/, tol into Rn. For each initial function ¢EC, it is 

equipped with the norm 

II¢IL == sup 1I;(s)lI, 
s<{to-r" to 1 

(2.1.3) 

where 11·11 is an arbitrary norm in W. It is obvious that the space of initial state of 

Eq. (2.1.2) is infinite dimensional. This is one of the most important features of 

delay differential equations. When the dependence of x(t) on the initial function 

;(t) ahead of the moment t=to needs to be emphasized, the symbol x(t,to ,;) 

will be used for x(t) hereinafter. 

2.1.1 Existence and Uniqueness of Solution 

When an initial value problem of delay differential equation is to be solved, the 
most natural strategy is the method of step-by-step. For instance, it is possible to 
find out the solution x(t) of Eq. (2.1.2) on [to, to Hil , where the right-hand side 

is in terms of given states X(t-Tj )=;(t-Tj ), j=I,2, ... ,1 . Then, Eq. (2.1.2) can be 

solved for x(t) over [to+T/> to + 2 Til , where the right-hand side is in terms of 

known solution found in the first step. Repeating this routine recurrently, it is fea­
sible to determine x(t) up to any desired interval. 
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Example 2.1.1 Solve the initial value problem of a scalar delay differential 
equation 

{
i(t):-X(t-l), t20, 

X(t)-t, tE[ -1, 0]. 
(2.1.4) 

On the interval [0, 1], Eq. (2.1.4) becomes i(t)=-(t-l). Solving this ordinary 
differential equation gives a general solution x(t)=-(t-l)2 /2+c1 , where C1 =1/2 
can be determined from the condition ¢(O)=O. Hence, the solution of Eq. (2.l.4) 
on interval [0,1] is x(t)=-(t-l)2 /2+112. 

On the interval [1, 2], Eq. (2.1.4) becomes i(t)=(t-2)2/2-1I2 after x(t-I) is 

substituted. By integrating this equation under the condition x(1)=1I2 , we obtain 
x(t)=(t-2)3/3!-t/2+(1+1I3!) . 

Repeating this routine recurrently gives the solution ofEq. (2.1.4) 

x(t)= 

t, tE[-I,O], 

-(t-l)2/2+1I2, tE[O,I], 

(t_2)3/3!-t/2+(1+1I3!), tE[I,2], 

The corresponding time history is shown in Fig. 2.1.1. 

0.5 

x 0.0 f-------+-+--I'----''<;:::-::;;---=------1 

-0.5 

o 5 10 15 20 

Fig. 2.1.1. Time history of solution ofEq. (2.1.4) 

(2.1.5) 

If multiple time delays are involved in a delay differential equation, the method 
of step-by-step is still valid, but may become very complicated. The method of 

step-by-step converts the initial value problem given by Eq. (2.1.2) into a series of 
initial value problems of ordinary differential equations, which may be succes­

sively solved. Using the idea of studying the existence and uniqueness for ordi-
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nary differential equations leads to the corresponding conclusions for delay differ­

ential equations. 

To briefly state the theorem of existence and uniqueness, consider Eq. (2.1.2) 

when 1=1 and rewrite it as 

{
X= ~t'X(/)'X(/-T))' XEW, 1>/0, 

X(/)-;(/), IE[/o -T, 10], 
(2.1.6) 

where ;(t) is continuous on [/o-T, 10]' In addition, for t~/o and d>O, we defme 

two sets for the ~tatement of following theorem 

J=[i, +00), D={XER n Illxll<d}. (2.1.7) 

Theorem 2.1.1 Assume that 
(a) f(/,X(/),X(/-T)) is continuous in JxD2; 
(b) f(t,x(t),X(t-T)) is of local Lipschitz with respect to X(/) and X(t-T) , 

namely, there is a constant LG>O for Gr;; JXD2 such that for any (t,t;I,t;2) and 

(t,'1I,'I2) EG the following inequality holds 

2 

IIf(t,t;1 ,t;2)-f(/,'11>'12)II~LG ~II t;j -'I jll (or ~LG ~~fllt; j --"'I jll ). (2.1.8) 

Then, there exists a constant A>O or A=+oo such that Eq. (2.1.6) has a unique 

continuous solution X(/,to,;) for IE[/o-T, 10+A]. 

Proof For a given initial function ;, we denote DI ={ If' 11IIf'-;llc <dl } and 

Q=[to, to+A]xDI2, and choose A>O and d l E(O,d) such that Qr;;JxD2. Fur­

thermore, let xo(t) ED be a continuous function defined by 

{
;(t), 

xo(t)= 
;(to), 

and then define Xk(t) for k~l recurrently by 

{
;(/)' tE[to -T, to], 

Xk(t)= It 
;(to)+ to f(s,xk_1 (S),Xk_1 (s - T))ds, t>to· 

If Xk-I(t) ED, M=suPnllfll and do=II;(to)1I enable one to write 

(2.1.9) 

(2.1.10) 
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IIXk(t)II:o:::: 11,s(to)11 + 1: II!(S,XH (S),Xk_1 (S - r))llds 

:0:::: do + Mlt-tol:O:::: do + MA. 

(2.1.11) 

Thus, xk(t) ED holds if A«d-do)/2M. As a result, xk(t) ED holds for all 

k:2:l. 
Now, we can claim that xk(t) converges uniformly on [/o-r, to+A] as 

k-++oo. In fact, for tE[to, to + A] , we have 

(2.1.12) 

where L is the Lipschitz constant of !(t,x(t),x(t-r)) over n. Because 

Xk(t)-Xk_1(t)""'0 holds for all tE[to-r, to], the above inequality is true for all 

tE [to -r, to + A] . Using the inequality 

(2.1.13) 

gives 

tE [to-r, to+A] , k:2:1. (2.1.14) 

This implies that Xk (t) converges to a function x(t)"", x(t,to,,s) uniformly on 

[to-r, to+A] as k-++oo. Imposing k-++oo in both sides ofEq. (2.1.10) gives 

{
,set), tE[to-r, to], 

x(t)= t 

,s(to) + L !(s,x(s),x(s-r))ds, 
(2.1.15) 

t >to. 

To prove the uniqueness, it is assumed on contrary that there is another solution 

y(t)= y(t,to ,,s) of Eq. (2.l.6) on the interval [to -r, to + A] with A>O. As done 

in the above part, we have 

and 

Ilxk+1(t)- y(t)II:O::::2L rt Ilxk(S)- y(s)llds, tE [to-I', to+min(A,A)] (2.1.16) Jto 

(2.1.17) 

There follows 
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Ilxk(t)_y(t)II<_M---,(_2~-'-1-,-;~_~-"to-,--lk+_1 , tE [to-T, to+min(A,A)] , k?O. (2.1.18) 

Equation (2.1.18) implies that Ilxk (t)- y(t)II~O when k~+oo. Hence, x(t)= y(t) 
holds for all tE [to -T, to +min(A,A)] . This completes the proof. 

Obviously, the proof of Theorem 2.1.1 is a natural extension of Picard's idea in 

studying the existence and uniqueness of a solution of ordinary differential equa­
tion. As done in the case of ordinary differential equations, it is also possible to 

prove that the solution depends continuously on the initial function under proper 

conditions. In addition, the solution of a delay differential equation can be extend­

ed toward the positive direction of t, first from [to-T, to) to [to-T, to+AI) with 

Al >0 , then to a larger [to -T, to + Al + A2) with Al >0 and A2 >0 , and repeatedly 
up to the maximal interval where the solution exists. However, it is very difficult 

and even impossible to extend the solution of a delay differential equation toward 
the negative direction of t , see (Hale 1977). 

Worthy of mention is that, unlike the case of autonomous ordinary differential 
equations where the uniqueness means that the solutions starting from different 

initial conditions do not intersect with each other, the solutions of Eq. (2.1.6) from 

different initial conditions may intersect with each other. They may intersect even 

infinite many times, but do not destroy their own uniqueness because the intersec­
tions come from the project of different solutions in an infinite dimensional space 

into a finite dimensional space. 
Example 2.1.2 It is obvious that the linear delay differential equation 

x(t)=-X(t-%), XER (2.1.19) 

has two distinct solutions XI (t)=sint and X2 (t)=cost . They intersect with each 

other infinite number of times at t=rc(k+1I4), k=0,1,2, .... 
For Eq. (2.1.6), if f(t,x(t),X(t-T)) is differentiable up to a sufficiently high 

order, the k-th order derivative X(k) (t) of solution x(t) may be discontinuous at 

to +(k-1)T , but all xU) (t), j <k are continuous at to +(k-l)T . For example, it is 

easy to see from the method of step-by-step that x(to )=x(to +O)=x(to -O)=;(to) . 

Nevertheless, x(to +O)=x(to -O)=~(to -0) may not hold. At t=to +T, x(t) is 
continuous because of the continuity of the right-hand side f(t ,x(t),X(t-T)) . Ac­

cording to 
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X··(t) 8!(t,x(t),x(t-r)) D f( () (-)). ( ) 
--"--'---'--'--'----'-'-+ x(t) t ,x t ,x t r x t at (2.1.20) 

+ D x(t_r)f(t,x(t),x(t-r))x(t-r), 

x(t) may be discontinuous at t=to +r since x(t-r) may not be continuous there 
as explained above. As t increases, the solution x(t) becomes more and more 

smooth. This property, usually referred to as the flatness of solution, results in 

some good behaviors of delay differential equations. 

2.1.2 Solution of Linear Delay Differential Equations 

For the initial value problem of a linear delay differential equation, the conditions 
of existence and uniqueness of its solution always hold true. As done for linear 

differential equations, the linear delay differential equations can be solved by 

means of the Laplace transformation. To present this technique as simple as possi­

ble, this subsection is confined to the scalar delay differential equations, even 
though all the results are true in the case of higher dimensions. 

Consider the initial value problem of a linear scalar delay differential equation 

{
x=aX+bX(t-r)+ f(t), xER, t>O, 

x(t)=rjJ(t), tE[-r, 0], 

(2.1.2la) 

(2.1.21 b) 

where a,bER are constants, f(t) is a continuous function. In order to perform 

the Laplace transform on Eq. (2.1.21), it is essential to establish an exponential 
estimation for the solution first. To this end, we need the famous Gronwall ine­

quality as following. 
Lemma 2.1.1 Suppose that u(t) and aCt) are two real continuous functions on 

interval [c, d], and P(t)zO is an integrable function on [c, d]. Furthermore, 
aCt) is non-decreasing on [c, d]. If 

u(t)::S:a(t)+ Ip(s)u(s)ds, (2.1.22) 

then 

u(t)::s:a(t)exp[Ip(s)ds] . (2.1.23) 

Proof Let R(t)=. S;P(s)u(s)ds, then Eq. (2.1.22) becomes u(t)::s:a(t)+R(t). It 

is easy from this inequality to derive 
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and 

dR(t) = P(t)u(t)~ P(t)[ a(t)+ R(t)] 
dt 

d IS IS -{R(s)exp[- P(;)d;]}~a(s)p(s)exp[- P(;)d;]. ds c c 

Integrating Eq. (2.1.25) from a to t yields 

R(t)~ fa(s)P(s)exP[fp(;)d;]ds. 

(2.1.24) 

(2.1.25) 

(2.1.26) 

Because aCt) is non-decreasing on [c, d], substituting Eq. (2.1.26) into Eq. 

(2.1.22) gives 

u(t) ~ a(t)+a(t) J:P(s)exp[ fp(;)d;]ds} 

(2.1.27) 

= a(t)-a(t) J:d{exp[ fp(;)d;]} =a(t)exp[ J:P(s)ds]. 

This completes the proof of the lemma. 
Applying the Gronwall inequality to Eq. (2.2.21) gives the following theorem. 

Theorem 2.1.2 For the unique solution x(t,O,¢) ofEq. (2.1.21), there exist two 

positive constants a and P such that 

1 I' Ix(t,O,¢)1 ~ aeP'[iI¢II+- If(s)lds], 
a 0 

t>-T. (2.1.28) 

Proof Equation (2.1.21) is equivalent to 

{
¢(O)+ f[ax(s)+bx(S-T)+ f(s)]ds, 

x(t) = 0 

¢(t), tE[-T, 0]. 

t>O, 
(2.1.29) 

Hence, the following inequality holds for t'?-T 

Ix(t)1 ~ '~~ll¢(t)1 + J:nal·lx(s)1 +Ibl·lx(s -T)I+lf(s)llds 

=II¢II+ Dal·lx(s)lds+ J:ibl·I¢(s)lds+ Dbl·lx(s)lds+ Df(s)lds 

(2.1.30) 

~ [(1 + IbIT)II¢II+ Df(s)lds]+ J: (Ial +lbl>lx(s)lds 

1 I' I' =a[II¢II+- If(s)lds]+ Plx(s)lds, a 0 0 
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where a=I+lblr and P=lal+lbl. Applying the Gronwall inequality to Eq. (2.1.30) 
yields Eq. (2.1.28). This completes the proof of Theorem 2.1.2. 

Having had the exponential estimation for the solution x(t), we can perform 

the Laplace transform on Eq. (2.1.21) so that 

X(4)=Lf1(4)[¢(0)+be-Ar 1¢(s)e-Asds+F(4)], (2.1.31 ) 

where 

Here, LI(4) is the characteristic function ofEq. (2.1.21a). Let 

(2.1.33) 

where r is a contour on the complex plane with ReA,> p. Obviously, h(t) 

serves as the impulse response function since it is the response of the system gov­

erned by Eq. (2.1.21a) subject to a Dirac impulse f(t)=8(t) and the initial condi­

tion ¢(t)=O on tE[-r, 0]. 
Applying the inverse Laplace transform to Eq. (2.1.31) yields 

x(t) = h(t)¢(O) + 1. Lfl (4)eAt [be-Ar 1¢(s)e-Asds+F(4)]d4. 

By using the theorem of convolution, Eq. (2.1.34) can be simplified to 

x(t)=h(t)¢(O)+b fh(t-r-s)¢(s)ds+ ! h(t-s)f(s)ds . 

(2.1.34) 

(2.1.35) 

The first two terms in the right-hand side ofEq. (2.1.35) are composed of the gen­

eral solution of the homogeneous equation corresponding to Eq. (2.1.2Ia) under 

the initial condition (2.1.21 b). Denoting this solution by x(t ,O,¢) , we arrive at the 

following formula of variation-of-constants. 
Theorem 2.1.3 The general solution ofEq. (2.1.21) is in the from 

x(t)=x(t,O,¢)+ f:h(t-s)f(s)ds, (2.1.36) 

where x(t,O,¢) is the general solution of Eq. (2.1.21a) under the initial condition 

(2.1.21b) when f(t)=O. 

Theorem 2.1.3 shows that linear delay differential equations have the same 

structure of solutions as linear ordinary differential equations. That is, the solution 
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consists of two parts. One is proportional to the non-zero initial function ¢(t) for 

tE[-r, 0], and the other is to the non-zero input f(t) for t>O. 
Finally, we look at the solution structure of the homogeneous equation corre­

sponding to Eq. (2.1.21a). Let ..1,0 be a root of the characteristic function LI(A) 
and define it as the characteristic root of Eq. (2.1.21a). According to the defini­

tion of LI(A) in Eq. (2.1.32), xo(t)=e Aot is obviously a solution of Eq. (2.1.21a) 

when f(t)=O. As for all the characteristic roots of Eq. (2.1.21a), each of them 

corresponds to a solution of Eq. (2.1.21a) when f(t)=O. All these solutions are 

referred to as the fundamental solutions of the homogeneous equation of Eq. 

(2.1.21a). Obviously, any linear combination of the fundamental solutions is also a 

solution of the corresponding homogeneous equation ofEq. (2.1.21a). This prop­

erty is quite similar to that of ordinary differential equations, but the number of 

fundamental solutions here is usually infinite. 

If ..1,0 is a repeated root of LI(A) , counted by multiplicity m, the fundamental 

solutions corresponding to ..1,0 will be xk(t)=tke Aot ,k=O, 1, ... , m-l . To verify this 

assertion, substitute xk(t) into Eq. (2.1.21a) under f(t)=O and use the binomial 

formula to expand (t-r)k, then we have 

xk (t)-axk (t)-bXk (t-r)=[ Aotk +ktk-1-atk -b(t-r)k e-AOT]eAot 

- Jot ~(k)tk-j AU) (") k-O 1 1 -e L..... LJ /l.o, -, '" . . ,m- , 
j~O } 

(2.1.37) 

where LI(O)(Ao)=LI(Ao) and LI U)(Ao) represents the j-th derivative of LI(A) at 

..1,0' Because LI (k)(Ao)=O, k=O, 1, ... , m-l, all xk(t)=tkeJot , k=O, 1, ... , m-l are 

the solutions ofEq. (2.1.21a) when f(t)=O. 
Moreover, it has been shown, in (Diekmann et al. 1995) on the basis of theory 

of residues, that any solution of the homogeneous equation corresponding to Eq. 

(2.1.21 a) under some conditions is in the form 

X(t)= ~>/t)eA/ , (2.1.38) 
j 

where Aj ,j=I,2,.·· are the characteristic roots and q j (t),j=I,2,.·· are polynomi­

als. In general, the solution of the homogeneous equation corresponding to Eq. 

(2.1.21a) is in the form 

"'" At f x(t)= L..Jq/t)e ] + , (2.1.39) 
j 

where the integral approaches to zero as t --t +<XJ . 
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2.2 Stability in the Sense of Lyapunov 

The stability in the sense of Lyapunov has been widely used to evaluate the per­

fonnance of dynamic systems no matter whether any time delays are involved or 

not. Compared with the dynamic systems free of time delays, the stability analysis 

for delayed dynamic systems, of course, is much more complicated in genera1. 

Following the similar routine as done for ordinary differential equations, it can be 

shown that there exists a kind of delay differential equations whose stability of ze­

ro solutions depends on the initial time to, see (Qin et a1. 1989). The engineering 

systems governed by such a kind of delayed differential equations is dangerous 

and should be considered to be unstable. For the autonomous dynamic systems 

with constant time delays, however, the stability of the zero solutions is indepen­

dent of the choice of initial time to. 
The theme of this book is confined to the study on the dynamic systems with 

constant time delays. For example, we consider a set of autonomous delay differ­

ential equations with constant time delays 0< r1 ::;; r 2· •• ::;; r l as following 

{
yet): ~(Y(t),y(t-rl ),y(t-r 2),,· ·,y(t-rl )), YER n , t>/o, 

y(/)-; (t), tE[tO -rl , to]' 
(2.2.1) 

where i(t) is continuous on [to-rl' 10 ]. Assume that Eq. (2.2.1) satisfies the 

conditions of existence and uniqueness of solution, and denote its unique solution 

by y(t)= y(t,to,i). 
As in the case of ordinary differential equations, the stability problem of a non­

zero solution can always be transfonned into that of a zero solution. In fact, a 

perturbed solution y(t)=y(/,/o,i) should be studied to check the stability of non­

zero solution Y(t). Let x(t)= y(t)-yet) , then we have 

{
.t(/)= ~(X(/)+ y(t),x(/-r1)+ y(t-r1),.· ·,x(t-r/ )+ y(t-r/ )) 

- f(y(t),y(/-r1),-· ·,y(/-rl )), 1>/0 , 

x(/)=;(t)=;(t)-i (I), tE[/o -rl , to] 

or simply denote it by 

{
.t(/): f(x(t),x(t-r1),.· ·,x(t-rl )), 

X(/)-;(t), tE[to-rl, to]. 

(2.2.2a) 

(2.2.2b) 

Obviously, Eq. (2.2.2) has a zero solution starting from ;(t)=0, IE[to-r, to]. 
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Definition 2.2.1 The zero solution of Eq. (2.2.2b) is said to be stable if for any 

&>0, there exists £5>0 such that any solution x(t,to';J) of Eq. (2.2.2b) satisfies 

Ilx(t,to,,s)II<& provided that 11,sllc<8. 
Definition 2.2.2 The zero solution of Eq. (2.2.2) is said to be asymptotically 

stable ifit is stable and there is a sufficiently small 8'>0 such that Ilx(t,to,,s)II~O 

as t ~ +00 provided that 11,sllc <8' . 
In general, the concepts of uniformly asymptotic stability, exponential asymp­

totic stability and global asymptotic stability can also be introduced as in the case 
of ordinary differential equations. Anyway, the widely used concept in engineer­

ing is the asymptotic stability. The analysis of asymptotic stability for autonomous 

delayed differential equations will be discussed in detail in this book. 

There are basically two important kinds of methods to study the stability of de­

lay differential equations. One is the Lyapunov method, and the other is the meth­
od of characteristic function. The pertinent advantage of the Lyapunov method is 

its applicability to both linear and nonlinear delay differential equations. However, 

it has great difficulty in both constructing the Lyapunov function and estimating 

the derivative of the Lyapunov function along the solution of a delay differential 

equation. In addition, the results obtained by the Lyapunov method are usually 

conservative. What will be mainly discussed in this book is the method of charac­

teristic function. Though this method works only for linearized delay differential 
equations, it offers some useful sufficient and necessary conditions. 

2.2.1 The Lyapunov Methods 

In this subsection, a few examples are presented to demonstrate how to check the 
stability of delay differential equations by using the Lyapunov method. For de­

tailed discussions on this topic, it is referred to see (Qin et al. 1989). 

(1) Method of Lyapunov function 

Most results, on the basis of the Lyapunov function, about the stability of zero 

solution for ordinary differential equations can be extended to delay differential 

equations. For example, if there is a positive definite function V in the system 

state such that the total derivative of V , i.e., the derivative of V with respect to 

time t along the solution of a delay differential equation, is non-positive definite 

or negative definite, the zero solution is stable or asymptotically stable. 

Example 2.2.1 Consider a delay differential equation 
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x(t)=-x(t)x2(t-r), xER. (2.2.3) 

Let the positive definite Lyapunov function be V(x)=x2 12, then the total deriva­

tive of V(x) reads 

dVI . 2 2 dt EQ.(2.2.3)=X(t)x(t)=-x (t)x (t-r)::;;O. (2.2.4) 

Thus, the zero solution ofEq. (2.2.3) is stable. 
In many cases, great difficulty may be encountered in estimating the total de­

rivative of V by a direct use of the method of Lyapunov function. To avoid the 
difficulty, Razumikhin proposed a useful condition as following. In order that the 

zero solution is asymptotically stable, it is necessary to require that the total de-

rivative of V is negative definite when 

Ix(t-r)I::;;lx(t)1 for r~to' (2.2.5) 

This inequality is usually called the Razumikhin condition. The idea behind this 

condition is quite simple. To ensure the zero solution asymptotically stable, the 

solution of an initial value problem should have a tendency of decreasing. If the 

inequality Ix(t)i<lx(t-r)1 holds for all t~to' the solution is undoubtedly asymp­
totically stable. So, it is necessary to check the stability for the case of 

Ix(t-r)I::;;lx(t)1 only. This implies that the Razumikhin condition does not 
strengthen the stability conditions, but reduce the unnecessary complexities. 

Example 2.2.2 Check the stability of a linear delay differential equation 

x(t)=-2x(t)-x(t-r), XER. (2.2.6) 

Let V(x)=x 2 /2, then the total derivative of V(x) reads 

dVI 2 dt Eq.(2.2.4)=-2x (t)-x(/)x(t-r). (2.2.7) 

Applying the Razumikhin condition to Eq. (2.2.7) gives 

~ I EQ,(2.2.4)::;;-2x2 (t)+lx(t)I·lx(/-r)I::;;-x 2 (I) . (2.2.8) 

The zero solution of Eq. (2.2.6) is asymptotically stable because - x 2 is negative 

definite. 

Example 2.2.3 Find out the asymptotic stability conditions for the following n­

dimensional linear system with a time delay 

x(t)=Ax+ Bx(t-r) , xERn. (2.2.9) 
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We first assume that the matrix A is Hurwitz stable. That is, all the characteristic 

roots of A have negative real parts. Then, we suppose that the positive definite 

matrix P is a unique solution of the following matrix equation 

A Tp+PA=-2Q (2.2.10) 

with a given positive definite matrix Q. Let the Lyapunov function be defined as 

v = X T (t)Px(t) + i~r x T (t)Qx(t)dt . (2.2.11) 

Along the solution ofEq. (2.2.9), we have 

dV, dt Eq.(2.2.9) =-x T (t)Qx(t)+2x T (t)PBx(t-r)-x T (t-r)Qx(t-r) . (2.2.12) 

Applying the Cauchy inequality to the second term in the right-hand side of Eq. 

(2.2.12) yields 

2x T (t)PBx(t-r)=2x T (t)PBQ-1I2Q1I2 x(t-r) 
(2.2.13) 

Thus, 

dVI TTl T dt Eq.(2.2.9) ::;-x (t)Qx(t)+x (t)PBQ- B Px(t) 
(2.2.14) 

::;-x T (t)Q1I2 (/_Q-1/2 PBQ-l BT PQ-1I2 )Q1I2 x(t). 

Let Amax (C) and Amin (C) be the maximal and minimal characteristic roots of 

matrix C, and 0" max (C) and 0" min (C) be the maximal and minimal singular val­

ues of C . The total derivative of V is negative definite if 

l-Amax (Q-1I2 PBQ-1BT PQ-II2»O. 

In order that Eq. (2.2.15) holds, it is sufficient that 

l-O"~ax (Q-1I2 PBQ-1I2 »0. 
This is true if 

or 

O"~ax (Q-1I2 p)IIBII~ >0 . 

O"~in (Q1I2) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 
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Therefore, if all entries in matrix B are small enough such that 

(2.2.19) 

holds, the zero solution ofEq. (2.2.9) is asymptotically stable. This is a quite natu­

ral conclusion when Eq. (2.2.9) is regarded as a slightly perturbed equation from a 

set of linear ordinary differential equations with the coefficient matrix A being 

Hurwitz stable. 

(2) Method of Lyapunov functional 

In mathematics, the delay differential equations are classified into the catalogue of 

functional differential equations. Thus, the general frame for the stability analysis 

of delay differential equations is based upon the method of Lyapunov functional. 

This method can be demonstrated through an example as follows. 

For a given real number r>O, let C=C([-r, 0], R") be the Banach space of 

continuous functions mapping [-r, 0] into R", and each ,EC be equipped with 

the norm 1I,llc=suPsef-r,olll,(s)ll, where IHI is any norm in R". If x,(s)=x(t+s) is 

defined for sE[-r, 0], then the delay differential equation with initial condition 

x(t)=,(t) for tE[o--r, 0-] can be recast in the form of functional differential 

equation 

(2.2.20) 

For instance, the scalar delay differential equation x(t)=-cx(t)[I+x(t-l)] can 

be written as x= !(t,x,) , where !(t,If/)=-qv(O)[I+If/(-I)]. Similarly, if 

!(t,If/) =g(t,If/(O),If/(-r)) , then x= !(t,xt ) gives x(t)=g(t,x(t),x(t-r)). 

Example 2.2.4 Consider the scalar differential equation with a time delay 

x(t)=ax(t)+bx(t-r) , (2.2.21) 

namely, 

x(t)=axt(O)+bxt(-r) . (2.2.22) 

Let the Lyapunov functional V be defmed as 

V(Xt)=~X;(O)+ ,ufO x; (s)ds, ,u>0, 
2 -, 

(2.2.23) 

which is positive definite. The total derivative of V is 
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dV
I 

2 2 dt Eq.(2.2.22) =(a+ ,u)Xt (O)+bXt (O)xt( -r)-,uXt (-r) 

(2.2.24) 

In order that the total derivative of V is negative definite, it is sufficient and ne­

cessary that the following two inequalities hold 

a+ ,u<0, -4(a+ ,u),u-b2 >0. (2.2.25) 

This fact is true if ,u=-aI2 and a2 _b2 >0. In other words, the zero solution is 

asymptotically stable if a<O and !b!<-a . In this case, the stability is independent 
of the time delay. 

It is certainly possible to check the results of Example 2.2.3 by using the Ly­

apunov functional, too. In fact, the Lyapunov function V defined in Eq. (2.2.11) 

is essentially a Lyapunov functional as following 

(2.2.26) 

and the total derivative of V now becomes 

(2.2.27) 

In order that Eq. (2.2.27) is negative definite, it is sufficient and necessary that the 

coefficient matrix in the right-hand side ofEq. (2.2.27) is positive definite. This is 

defmitely true if IIBllz is small enough. 

Finally, it is worthy to point out the possibility of determining whether or not 

the zero solution of a delay differential equation is unstable by means of the Ly­

apunov method, see, for example, (Hale 1977). 

2.2.2 Method of Characteristic Function 

Consider an n-dimensional linear delay system governed by 

I 

x=A.x+ LBjx(t-rj ) , xERn , A, BjERnxn , 
;=1 

(2.2.28) 
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where 0<1"1 < ... <1"/ are the time delays. Substituting the candidate solution 
x(t)=ae At with a constant A and a constant vector a into Eq. (2.2.28) yields 

I 

det(Al-A-LBje-J.Tj)=O, 
j=1 

(2.2.29) 

where I ER""n is the identity matrix. Eq. (2.2.29) is called the characteristic 
equation of Eq. (2.2.28), and its roots are called the characteristic roots of Eq. 

(2.2.28). Furthermore, Eq. (2.2.29) can be recast as following 

(2.2.30) 

where dj(A) are the polynomials with respect to e-J.T[, e-J.T2, ... and e-lr1 • In 

particular, 

(2.2.31) 

where tr(Bj ) is the trace of matrix Bj • The characteristic function p(A) in Eq. 

(2.2.30) is usually called a quasi-polynomial or emphatically characteristic quasi­

polynomial since dj(A) may include a number of exponential functions in A. 

The method of characteristic function is to study the system stability by investi­
gating the root allocation of p( A) . 

Equation (2.2.30) gives the asymptotic behavior of peA) 

(2.2.32) 

as IAI-Hex:> under the condition ReA~O. This implies that the roots (if any) of 

peA) must lie in a sufficiently large disk. If this is not the case, peA) should have 

an infinite number of roots on the open right half-plane. Then, there is a root se­
quence {Aj } such that p(AJ=O and IAJ-Hex:> as i-Hex:>. This gives a contra­

dictory equation 

(2.2.33) 

On the other hand, the quasi-polynomial peA) is a non-constant, analytic function 

in A on the entire complex plane, so the roots of peA) are isolated, and only a fi­

nite number of roots lie in any compact set of the complex plane. The above two 

facts can be summarized as a lemma. 

Lemma 2.2.1 The quasi-polynomial peA) in Eq. (2.2.30) has only a fmite 

number of roots on the right half-plane defined by ReA~O . 

Moreover, we have the following claim. 



www.manaraa.com

44 2 Fundamentals of Delay Differential Equations 

Lemma 2.2.2 The number of roots of peA,) in any given strip 

{A,=x+iy / a~x~b} is finite. 

Proof Assume on the contrary that there are an infinite number of roots {A,j} 
of peA,) in the given strip. Because only a finite number of roots lie in a compact 

set of the complex plane, we have /A,j /~+oo subject to a~ReA,j ~b as j~+oo. 

This results in the contradictory Eq. (2.2.33) again. The proof is completed. 

Lemma 2.2.2 reveals an important feature of delay differential equation, which 

is essential for the stability analysis. 

Lemma 2.2.3 If all the roots of p( A,) have negative real parts, then, there exists 

a positive number a such that ReA,~-a holds true for all roots of p(A,). 
Proof Assume on the contrary that there is a root sequence {A,j} of A,=re ili on 

the open left half-plane such that ReA, j ~O when j ~ +00. Then, we must have 

/A,j/~+oo as j~+oo since only a finite number of roots lie in a compact set of the 

complex plane. This again gives the contradictory Eq. (2.2.33). 

Example 2.2.5 Consider the simple quasi-polynomial p(A,)=A,-a-be-.<r. If 

b*O, peA,) has an infinite number of roots. Assume that {A,j} is a sequence of 

roots of p(A,) , then 

(2.2.34) 

If 1A,)1~+00, then ReA) ~-oo as j~+oo. This implies that there exists a real 
number a such that ReA<a holds for all roots A, of p(A,). Because peA,) is 

analytic on the entire complex plane, the roots must be isolated, and the number of 

roots in any compact regions of the complex plane is finite. Moreover, the number 
of roots on the right half-plane is finite. In fact, the roots in the strip 

{A,=x+iy I O~x~a} must lie in some bounded rectangle. Otherwise, there is a se­

quence of roots {A,j} with /A,j/~+oo and O~ReAj<a as j~+oo. This contra­

dicts Eq. (2.2.34). Thus, the number of roots with ReA~O must be finite. 

Assume that all the roots of peA,) are {A,j} counted by multiplicity mj' As 

pointed out in Subsection 2.1.2, any solution of a linear homogeneous delay dif­

ferential equation can be expressed as a linear combination of the fundamental 

solutions such as tke AjI , k=O, I, ... , mj , j=I,2, ... ,+00. Thus,wehavethefol­

lowing assertions for the stability of delay differential equation. 

Theorem 2.2.1 The zero solution of Eq. (2.2.28) is asymptotically stable if and 

only if all the roots ofEq. (2.2.30) have negative real parts. 

Theorem 2.2.2 Assume that p(A,) in Eq. (2.2.30) has a finite number of simple 

pure imaginary roots and all the other roots of peA,) have real parts less than a 

negative number, then the zero solution ofEq. (2.2.28) is stable. 
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Theorem 2.2.3 If peA) in Eq. (2.2.30) has any repeated pure imaginary roots 
or any roots with positive real parts, the zero solution ofEq. (2.2.28) is unstable. 

The proofs of the above theorems are based on the estimation techniques for 
contour integral, see (Qin et al. 1989) for more details. 

As for the analysis of asymptotic stability, the Pontryakin Theorem stated be­

low serves as a very powerful tool. 

Theorem 2.2.4 Let R(m)=Re[p(im)] and S(m)=Im[p(im)] , then the zero so­

lution ofEq. (2.2.28) is asymptotically stable if and only if R(m) and S(m) have 

real, simple and interlacing roots, and the following inequality holds for all real m 

R(m)S'(m)-S(m)R'(m»O, (2.2.35a) 

where the prime represents the derivative with respect to m. 
The proof of this theorem is not presented here since it is rather lengthy. To un­

derstand the theorem intuitively, we note that Eq. (2.2.35a) is equivalent to 

d (.) S'(m)R(m)-R'(m)S(m) 0 -argp 1m > . 
dm R2(m)+S2(m) 

(2.2.35b) 

Thus, a quasi-polynomial peA) is asymptotically stable if and only if R(m) and 

S(m) have real, simple and interlacing roots, and the phase angle of p(im) in­

creases monotonously with an increase of m . 
If the time delays are regarded as system parameters, a root of peA) is con­

tinuous with respect to the time delays. This fact leads to the following theorem. 

Theorem 2.2.5 As the time delays vary, the multiplicity summation of roots of 
p(;t)=O on the open right half-plane can change only if a root appears on or 

crosses the imaginary axis. 

Proof For the sake of simplicity, the proof is given for the case of a single time 

delay. To look at the effect of the time delay, denote peA) by p(A,r). Lemma 

2.2.1 shows that the multiplicity summation of roots of p(A,r) on the open right 

half-plane is finite. Suppose that the multiplicity summation changes, but no roots 

appear on or cross the imaginary axis. This can occur only when a root appears at 

infinity. In fact, let A=A(r) be a root of p(A,r)=O. For a small circular disk 

around A(r) and any r' sufficiently close to r, the multiplicity summation of 

roots in the disk is equal to the multiplicity of A(r). From the Rouche's theorem 

in complex analysis, a root A(r) is not able to appear or disappear, or change its 

multiplicity all of a sudden at any [mite point on the complex plane. Hence, there 

exists a time delay f and a root A(r) of p(A,r)=O such that IAI-HOO as 

r~f+O or r~f-O for ReA;;::O . However, 
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p(A( r),r) 1+0(1) 
A"(r) 

(2.2.36) 

holds for ReA~O when r~f+O or r~f-O since le-'-"('-JI:S:I. Equation (2.2.36) 

contradicts the fact that p(A,r)=O. Then, as r varies, the multiplicity summation 

of roots of p(A,r)=O on the open right half-plane can change only if a root ap­

pears on or crosses the imaginary axis. This completes the proof of Theorem 2.2.5. 
From this proof, the same result holds true when the roots of peA) are consid­

ered as functions with respect to the coefficients of p(A). 

A quasi-polynomial usually has an infinite nl;lmber of roots, so it is hard and 

even impossible to find out all the roots. Hence, Theorem 2.2.1 can only be used 

directly to deal with a few simple cases such as the so-called delay-independent 

stability of a scalar delay differential equation. 

Definition 2.2.3 The solution of a delay differential equation is said to be de­
lay-independent stable if it is asymptotically stable for any given time delays. 

The following theorem is obviously true. 

Theorem 2.2.6 Equation (2.2.28) is delay-independent stable if and only if the 

following two conditions hold. 

(a) Equation (2.2.28) is asymptotically stable when all the time delays disap­

pear. 
(b) The marginal stability condition p(im)=O has no real root m for all given 

time delays. 

Example 2.2.6 Study the condition of delay-independent stability of a linear 

delay differential equation as following 

x(t) + ax(t) + bx(t - r) = 0, XER. 

The corresponding characteristic function ofEq. (2.2.37) is 

p(A)=A+a+be-"'- . 

(2.2.37) 

(2.2.38) 

When r = 0, we have p(A)=A+a+b, and a+b must be positive to guarantee the 

Hurwitz stability of the system without time delay. If r > 0, the marginal stability 

condition p(im)=O leads to lim+al=lbl. It yields m 2 +a 2 _b2 =0. Conversely, if 

there exists m > 0 satisfying this equation, then I im+al2 =lbl2 holds. Thus, there is 

a real number BE[O, 2n) so that im+a=be iB • So we have r=B/m such that 

p(im)=O. If a 2 - b 2 = 0 then p(O) = a + b = 2a *- 0 since a + b > O. Hence, for 

all given delay r, p(im) *- 0 holds for all real m if and only if m 2 +a 2 _b2 =0 

does not have any real root m other than zero. This fact is true if a 2 - b2 ~ 0 . 
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Thus, Eq. (2.2.37) is delay-independent stable if and only if both a+b>O and 

a 2 - b2 ~ 0 hold true. 

2.2.3 Stability Criteria 

To testify the asymptotically stability of a linear delay differential equation, it is 

sufficient to investigate the allocation of characteristic roots as analyzed in Sub­
section 2.2.2. Because a quasi-polynomial usually has an infinite number of roots, 

it is hard, and even impossible, to find out all the roots. So, it is highly demanded 

to develop some practical stability criteria. This subsection focuses on the stability 
criterion for the linear delay differential equation with following characteristic 

quasi-polynomial 

(2.2.39) 

where dj(A) are polynomials with respect to e- 4TJ , e-4T2 , ••• and e-4T{ , and Tj 
are the time delays. The main result of this subsection is the Hassard theorem as 

following. 
Theorem 2.2.7 Assume that the characteristic quasi-polynomial peA) of a lin­

ear delay differential equation has no roots on the imaginary axis. Let 

M(w)=ReWn p(iw)] , N(w)=Im[i-np(iw)] , and Pl~P2~···~Pm>O be the posi­

tive roots, counted by multiplicity, of M(w). Then, the delay differential equation 

is asymptotically stable if and only if 
(a) p(O);tO, 
(b) N(p);tO for all j=l, 2, ... , m, 

n 1 m. 
(c) -+-(-I)msgnN(O)+ ~)-IY-lsgnN(p)=O. 

2 2 j~1 

As peA) is assumed to have no roots on the imaginary axis, condition (a) in 
Theorem 2.2.7 is certainly satisfied. Thus, it requires verifying conditions (b) and 

(c) only. Before the proof of the theorem, two simple examples are presented to 

demonstrate how to use Theorem 2.2.7 to complete the stability analysis. 

Example 2.2.7 As shown in Example 2.2.6, the system governed by the quasi­

polynomial p(A)=A+2-e-4T is delay-independent stable. Now, we verify this re­

sult by using Theorem 2.2.7. Here n=l , p(O)=I;tO , M(w)= w+sinwT and 

N(w)=-2+coSWT. Because M(w) has no positive roots for any given T, so 

m=O. Condition (c) in Theorem 2.2.7 is n!2+sgnN(O)/2=O, which is definitely 

true because N(O)=-l<O. This completes the verification. 
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Example 2.2.8 Consider the stability of p(A)=A?+2A+e-.<r when 1"=1 and 

1"=4. We have n=2, p(O)=btO, M(m)=2m-sinm1" and N(m)=m 2 -cosm1". 

When 1"=1, M(m) has no positive roots and m=O, and N(O)=-l<O holds true. 
Thus, n/2+(-1)msgnN(0)/2=0. When 1"=4, M(m) has a positive root 

PI =0.4739, and N(Pl)=0.5436. This fact, together with m=1 and N(0)=-1, 

gives n/2-sgnN(0)/2+sgnN(Pl) +0. Thus, all the conditions in Theorem 2.2.7 
also hold for 1"=4. The system corresponding to p(A)=A2 +2A+e-.<r is asymp­

totically stable for both 1"=1 and 1"=4. 

To prove Theorem 2.2.7, three lemmas are required. These lemmas are related 

to a contour r =- .r; ur2 for any given r > 0 as shown in Fig. 2.2.1, where 

.r; = {A=reiO , (}:--n /2~ /2}, 

r2 = {A=im , m:r~O~-r }. 

(2.2.40a) 

(2.2.40b) 

Here, r is chosen to be large enough such that r encircles all the roots of peA) 

on the right half-plane ReA ~ 0 . 

1m 

Re 

Fig. 2.2.1. Contour r for Theorem 2.2.7 

Lemma 2.2.4 Under the conditions of Theorem 2.2.7, the number of roots, 

counted by multiplicity, of peA) with ReA~O is (21titI1Ap'(A)/ p(A)]dA. 

Proof Because peA) is an entire function, there is a non-zero entire function 

q(A) on r and in its interior such that 

N 

p(A)=q(A)n(A-Z)kj , (2.2.41) 
j=l 

where Zj are the roots of peA) encircled in r. Then, we have 

p'(A) d[lnp(A)] f ~+ q'(A) . 
peA) dA j=l A-Zj q(A) 

(2.2.42) 
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The Cauchy theorem in complex analysis implies that 

,f q'(A) dA=O . 
'jr q(A) 

By using the theorem of residue, we have 

i _1-dA=2rci, j=1,2, ... ,N . 
r A-Z j 

(2.2.43) 

(2.2.44) 

Substituting Eqs. (2.2.44) and (2.2.43) into the contour integral of Eq. (2.2.43) on 

r concludes that Lemma 2.2.4 is true. 

Now, we start the analysis of next lemma. The property of the contour integral 

on ~ is considerably simple. In fact, noting the asymptotic behavior 

(2.2.45) 

and 

(2.2.46) 

we have 

(2.2.47) 

as IAI-HOO with ReA,~O . Thereby, we obtain 

_1_. f P'(A)dA=_l r/2 [n+d;(re i8 )llB+O(y-I). 
2rcl Iip(A) 2rc J-1t/2 

(2.2.48) 

However, d] (A) is a linear combination of the exponential functions e~Ar" 

e~Ar2, ... and e~Arl with ,;>O,so id;(rei8)i is bounded and limr->+wd;(re i8 )=0. 

Applying the dominated convergence theorem to Eq. (2.2.28) yields 

lim_l_ r P'(A)dA=~. 
r->+w 2rc i Jr, p(A) 2 

(2.2.49) 

On r; , the following two asymptotic expressions hold 

(2.2.50) 

For sufficiently large w>O, M(w»O and N(w)=o(M(w)) are true. As it is as~ 

sumed that p(iw)*O holds for real w, there exist A(w»O and real ¢J(w) such 

that 
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M(w)+iN(w)=A(w)ei¢(aI} . (2.2.51) 

Then, we have 

M'(w)+iN'(w) A'(w) . do'( ) 
+1'1' w , 

M(w)+iN(w) A(w) 
(2.2.52) 

and 

-1-f P'(A)dA=_I_rr [A'(W) +i¢'(w)]dw. 
2ni r2 peA) 2ni r A(w) 

(2.2.53) 

From the definition of M(w) and N(w) , one of them is an even function and the 

other is an odd function. So, A'(w)IA(w)=[M2(W)+N2(W)]'/[2(M2(W)+N2(W))) 
is an odd function and ¢'(w)= [M(w)N'(w)-N(w)M'(w))/[M 2(w)+N2(w)) is an 

even function. As a result, we have 

lim-1-. f P'(A)dA = lim..!..[¢(O)-¢(r)) = ¢(O) . 
HOO 2m h p( A ) HOO n n 

(2.2.54) 

The above facts can be summarized as the following lemma. 

Lemma 2.2.5 Under the conditions of Theorem 2.2.7, the number of roots, 

counted by multiplicity, of peA) with Rd:2:0 is nI2+¢(0)ln. 
Lemma 2.2.6 

¢(O) 1 m. 
-=-(-I)msgnN(O)+ ~)-l)l-lsgnN(p). 

n 2 j=1 

(2.2.55) 

Proof As M(O)+iN(O);t:O, and either M(w) or N(w) is an odd function, ex­

actly one of the following four cases holds true. (a) M(O)=O and N(O»O, (b) 

M(O)=O and N(O)<O, (c) M(O»O and N(O)=O, (d) M(O)<O and N(O)=O. 

If M(w) has no positive roots, the curve M(w)+iN(w) for w:2:0 starts at a 

point satisfying one of the conditions (a), (b) and (c), traces a path on the half­

plane M(w»O, and N(w)=o(M(w)) as W-HOO. Thus, the change in ¢(w) on 

the interval [0, +00) is -nI2, nl2 or 0, depending on the conditions of (a), (b) or 

(c). As a result, we have 

n 
O-¢(O)=--sgnN(O) . 

2 
(2.2.56) 

In general, let PI :2:P2:2:·· ·:2:pm >0 be the positive roots, counted by multiplicity, 

of M(w). We can show that m must be finite as in the proof of Lemma 2.2.1 be­

cause ofEq. (2.2.50). Thus, we have 
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~(pm)-~(O)=~[sgnN(pm)-sgnN(O)]-sgnM( Pm), 
2 2 

(2.2.57a) 

j=1,2, ... , m, (2.2.57b) 

where Pm+l =0, and 

(2.2.57c) 

Summing up both sides of the above equations and noting that 

sgnM( )= . 
Pj+Pj+l {a, Pj=Pj+l' 

2 (-1)', Pj+l <Pj , 
(2.2.58) 

we arrive at 
1 m. 

~(O)=1t[-(-I)msgnN(O)+ L(-I),-lsgnN(p)]. 
2 j=l 

(2.2.59) 

This completes the proof of Lemma 2.2.6. 

At this stage, Theorem 2.2.7 can be immediately proved by a direct use of the 

above three lemmas. As shown in (Hassard 1997), this theorem can also be ex­

tended to the case when p(A.) has a fmite number of pure imaginary roots. 

Let R(m)=Re[p(im)] and S(m)=Im[p(im)] again, it is easy to show that 

S'(m)R(m)-R'(m)S(m) = N'(m)M(m)-M'(m)N(m) 
R2(m)+S2(m) M2(m)+N2(m) 

(2.2.60) 

Noting that 

d d N(m) N'(m)M(m)-M'(m)N(m) 
-arg[i-n p(im)]=-arctan 
dm dm M(m) M\m)+N2(m) 

= d: argp(im), 

(2.2.61) 

we obtain 

(2.2.62) 

From the proof of Lemma 2.2.6, the variation of arg[i-n p(im)] is just 

~(oo)-~(O)=-~(O) when m varies from zero to the positive infinity. Now, We 

are in the position to state the Michailov's criterion as following. 
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When peA) has no root on the imaginary axis, all the roots of peA) stay On the 

open left half-plane if and only if the variation of argp(im) is mt/2 when m in­

creases from zero to the positive infinity, namely, 

argp(im)I~OO = n; . (2.2.63) 

However, it is not easy to verify Eq. (2.2.63) in practice. So, the following crite­

rion in integral form is more preferable. 

Theorem 2.2.8 Assume that peA) has no root on the imaginary axis, then, all 

the roots of peA) stay on the open left half-plane if and only if 

where 

i+OO n1t 
Z(m)dm =-, 

o 2 

Z(m) d[argp(im)] 
dm 

R(m )S'(m )-S(m )R'(m) 

R\m)+S2(m) 

Remark 2.2.1 In order to check Eq. (2.2.64), it is sufficient to verify 

r'Z(m)dm> (n-l)1t 
Jo 2 

if a positive number s is chosen such that C Z(m)dm<1t/2. 

(2.2.64) 

(2.2.65) 

(2.2.66) 

Example 2.2.9 Consider again the quasi-polynomial p(A)=A+2-e-·<T in Ex­

ample 2.2.7. The function Z(m) now is in the form 

Z(m) 2-T+(1-2T)cosmT+mTsinmT . 
m2 + 4cosmT - 2msinmT + 5 

(2.2.67) 

By integrating Z(m) numerically, we find S;Z(m)dm=1t/2 ~1.5708 . According 

to Theorem 2.2.8, all the roots of peA) stay On the open left-half plane for any 

given time delay. 

Example 2.2.10 Check the stability of a delay differential equation with the 

following characteristic quasi-polynomial 

peA )=O.IA2 +0.3A+O.5+(O.IA+O.2)e -.«, +(O.2A+0.3)e -'«2 • (2.2.68) 

Now, we check whether S;Z(m)dOJ=1t ~3.1416 holds by using numerical inte­

gration. The computation shows that peA) is asymptotically stable when T1 =3 

and T2 =1.5 , and is unstable for T1 =2.5 and T2 =2 . 
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In control engineering, an effective and popular method for testifying the sta­
bility of linear delay systems is the graphic method of the Nyquist diagram. The 
method is based on the following theorem. 

Theorem 2.2.9 A linear dynamic delay system with Eq. (2.2.39) being the 

characteristic quasi-polynomial is asymptotically stable if and only if the Nyquist 

diagram of W(iw), where 

W(A)= peA) 
(A+IY , 

does not encircle the origin of the complex plane. 

(2.2.69) 

Proof It is easy to see from the Cauchy theorem in complex analysis that 

_1 rfW'(A)dA=_l rf[p'(A)_~]dA=_l rfP'(A)dA 
21ti 1r W(A) 21ti 1r peA) ..1,+1 21ti 1r peA) , 

(2.2.70) 

since n/(A+l) is analytic within r. From Lemma 2.2.4, the left-hand side ofEq. 

(2.2.70) also counts the number of roots of peA) with Rd:2:0. Substituting 

(2.2.71) 

into the right-hand side ofEq. (2.2.70) gives 

_1 . rf W'(A) dA=_1 . rf d[lnW(A)]=_1 . rf [dlnIW(A)I+id8] 
2m 1r W(A) 2m 1r 2m 1r 

(2.2.72) 

where 81 and 82 are the initial and final values of phase angle of W(A) when A 

moves along r in the counter-clockwise direction exactly one circle. Because 
W(A)~l+O·i as IAI~+CJ) with ReA:2:0, the quasi-polynomial peA) has no roots 
with Rd:2:0, or equivalently 82 -81 =0, if and only if the Nyquist diagram of 
W(iw) does not encircle the origin of the complex plane. 

Example 2.2.11 Confirm the stability of peA) in Eq. (2.2.68) by using Theo­

rem 2.2.8. As shown in Fig. 2.2.2a, the Nyquist diagram of p(iw)/(iw+l)2 with 

'I =3 and '2 =1.5 does not encircle the origin of the complex plane. Thus, the 

quasi-polynomial peA) is asymptotically stable. As for 'l =2.5 and '2 =2, peA) 

is unstable because the origin stays in the region bounded by the Nyquist diagram 

p(iw)/(iw+l)2 shown in Fig. 2.2.2b. 
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0.8 a. 0.8 b. 

0.4 0.4 
>. t> ... 
'" '" .5 = bI) 0.0 'bij 0.0 
'" '" .s .s 

-0.4 -0.4 

-0.8 -0.8 
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 

Real Real 

Fig. 2.2.2. The Nyquist diagrams of p(iw)/(iw+I)2; a. 1'\ =3 and 1'2 =1.5, b. 1'\ =2.5 and 

1'2 =2 

2.3 Important Features of Delay Differential Equations 

As shown in the previous sections, the delay differential equations can be studied 

in a similar way for ordinary differential equations in many aspects, and some re­

sults are also similar to those for ordinary differential equations. However, the 
delay differential equations are indeed different from ordinary differential equa­
tions. Example 2.1.2, for instance, indicates that the uniqueness of the solution of 
a delay differential equation does not exclude the possible cases where different 
solutions may intersect with each other. This is not the case for ordinary differen­

tial equations. 
The most notable feature of a delay differential equation is the infinite dimen­

sions of both state space and solution space. The state space ofa delay differential 

equation is an infinite-dimensional Banach space, rather than the Euclidean space 

for ordinary differential equations. As stated in the beginning of Section 2.1, the 

state of a dynamic system with a time delay T can only be determined if its initial 

state is given as a function vector ;(t) in the Banach space C([to-T, to],W), in­

stead of a constant state vector of finite dimensions in the Euclidean space. The 

solution space of a delay differential equation, no matter what dimensions the 

equation has, is always infinite-dimensional, whereas the solution space of an or­

dinary differential equation is of finite dimensions. This fact can be alternatively 

understood as following. The characteristic function of a linear delay differential 

equation includes at least one exponential term due to time delays, and hence may 

have an infinite number of characteristic roots, while an ordinary differential 

equation of order n has just n characteristic roots. This difference is the essential 
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cause that may give rise to great difference between these two kinds of differential 

equations. 

Though the time delays are often very short in applications, they should be ne­

glected or simplified with a great care. In what follows, a number of simple, but 

interesting examples will be given to demonstrate the effect of time delays on the 

system dynamics. They will lead readers to the latter chapters of the book. 

(1) Effect of time delays on the uniqueness of solutions 

Example 2.3.1 Consider a nonlinear delay differential equation 

x(t)=[x(t-r)-Kt3, xER, (2.3.1 ) 

where K is a constant. When r=O, Eq. (2.3.1) becomes an ordinary differential 

equation 

x(t)=[x(t)- K]I!3 . (2.3.2) 

Under the initial condition x(O)=K, Eq. (2.3.2) has two solutions. One is x(t)=K 

and the other is x(t)=K + 2.J2t 3!2 1(3.J3). Using the method of step-by-step, how­

ever, we can show that the solution ofEq. (2.3.1) is unique under any continuous 

initial functions if r> ° . 
Example 2.3.2 Consider again a nonlinear delay differential equation 

x(t)=[x(t)-x(t-r)]If3, XER. (2.3.3) 

When r=O, this equation degenerates to x=O, the existence and uniqueness of 

the solution hold true under any initial condition. If the initial function 

x(t)=rp(t)=K is assumed for tE[-r, 0], Eq. (2.3.3) has at least two solutions 

x(t)=K and x(t)=K+2.J2t3!2/(3.J3) when tE[O, r]. 

(2) Effect of time delays on the stability of solutions 

Example 2.3.3 Consider a set of linear delay differential equations 

{
X(t)= y(t-r), 

Y(t)=-x(t-r). 

X,YER, 
(2.3.4) 

When r=O, the zero solution ofEq. (2.3.4) is stable. For a sufficiently short time 

delay r, however, it is easy to show that the zero solution of Eq. (2.3.4) is unsta­

ble. In fact, the characteristic equation ofEq. (2.3.4) is 

(2.3.5) 
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Let the root ofEq. (2.3.5) be a function in T and denote it by ,4,(T) , we can read­

ily verify that 

(2.3.6) 

Thereby, Eq. (2.3.5) has a pair of conjugate characteristic roots with positive real 

parts when the time delay T is a sufficiently small, positive number. 

Example 2.3.4 Consider a set of linear delay differential equations 

x(t)::::Ax(t)+Bx(t-T) , (2.3.7) 

where 

~l' B=[~ ~l ~l· 
-I 0 0 0 

(2.3.8) 

The corresponding characteristic equation reads 

(2.3.9) 

When T=O, Eq. (2.3.9) has a repeated root ,4,=0 and the zero solution is unstable. 

For T>O, we find that ,4,=0 is a simple characteristic root and all other charac­
teristic roots have negative real parts. Thus, the zero solution is asymptotically 

stable. 

As time delays often produce great difficulty in the dynamic analysis, it is cer­

tainly beneficial to simplify the delay terms in a delay differential equation before 

it is analyzed or solved. A natural idea is to use the truncated Taylor expansion for 

the delay terms in a delay differential equation. The following example, however, 

indicates that the abuse of Taylor's expansion may give a wrong prediction of the 

system dynamics. 

Example 2.3.5 Consider a linear delay differential equation 

X(t)=-2X(t)+X(t-T), xER. (2.3.10) 

According to Example 2.2.6, the zero solution ofEq. (2.3.10) is delay-independent 

stable. For any short time delay T satisfying O<T«I, substituting the first order 

Taylor expansion X(t-T)~X(t)-ri'(t) into Eq. (2.3.10) yields 

(H l)x(t)+x(t)=O. (2.3.11) 
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The approximated differential equation is asymptotically stable since 0-1. If the 
second order Taylor expansion x(t-r)~[x(t)-rx(t)+r2x(t)/2] is substituted into 
Eq. (2.3.1 0), the result is a second order ordinary differential equation 

r 2x(t)- 2( r+ l)x(t)- 2x(t)=0. (2.3.12) 

It is easy to verifY, from the Rough-Hurwitz criterion, that the zero solution ofEq. 
(2.3.12) is unstable. This example shows that great care must be taken when the 

Taylor approximation of higher orders is used to simplifY the delay terms. The ef­
ficacy of the Taylor expansion of delay terms will be analyzed in detail in Section 

5.3. 
It is also worthy to notice that the stability criteria of delay differential equa­

tions of neutral type are quite different from those for retarded type. For example, 
the zero solution of a delay differential equation of retarded type is asymptotically 

stable if and only if all the characteristic roots have negative real parts, but this 

may not be the case for a delay differential equation of neutral type. That is, the 

zero solution of a delay differential equation of neutral type may not be asymp­

totically stable even if all the characteristic roots have negative real parts. As stat­
ed in (Kolmanovskii and Myshkis 1999), all the characteristic roots of the fol­

lowing delay differential equation of neutral type 

x(t)=-x(t)-x(t-r), XER (2.3.13) 

lie on the left half-plane, but an infinite number of them are closely accumulated 

to the imaginary axis so that the zero solution ofEq. (2.3.13) is unstable. 

(3) Effect of time delays on the periodicity of solutions 

Example 2.3.6 Consider the delay differential equation 

x(t)+x(t-r)=O, xER, (2.3.14) 

which serves as the simplest model for delayed linear oscillators. Equation 

(2.3.14) has a periodic solution if r=O. For any r>O, however, Eq. (2.3.14) has 

no periodic solution at all because the corresponding characteristic equation 

)} +e-Al" =0 has no pure imaginary roots. Intuitively speaking, the truncated Tay­

lor expansion of the delayed stiffuess term x(t-r)~x(t)-zX(t) produces a negative 

damping term -ri(t) when r is sufficiently short. This term even renders the 

system unstable. 

Example 2.3.7 Consider the delay differential equation 

x(t)+cx(t)+x(t-r)=O, xER, (2.3.15) 
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where c > o. This is a simple model for the damped linear oscillators with a time 
delay r in the stiffuess term x(t). If r=O, Eq. (2.3.15) has no periodic solution 
and any perturbed motion of the oscillator from its equilibrium x=O is damped 
out. When r>O, however, Eq. (2.3.15) may have a periodic solution because the 
corresponding characteristic equation has a pair of pure imaginary roots for a 
proper choice of (c,r). For instance, when c=0.0998 and r=O.I, the character­
istic equation of Eq. (2.3.15) has a pair of conjugate imaginary roots ±0.9975. In 
this case, the effect of damping term d(t) is approximately balanced off by 
-a(t) owing to the delayed stiffuess term x(t-r). Hence, the harmonic oscilla­
tion becomes possible. 
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3 Stability Analysis of Linear Delay Systems 

From the viewpoint of mathematicians, the stability problem of a linear delay dy­

namic system has been solved because a number of sufficient and necessary con­

ditions have been available for the stability analysis when the time delays are 
given. See, for example, (Stepan 1989), (Qin et al. 1989) and (Hassard 1997). As 

presented in Section 2.2, however, these conditions do not show any explicit rela­
tionship among the system parameters that the engineers are interested in. When 

those conditions are used, the stability test usually involves very tedious computa­

tion such as solving transcendental equations or computing the spectrum of op­

erators. 

The stability criteria for linear delayed dynamic systems can be classified into 

two catalogues according to whether the stability of system depends on the time 

delays or not. In the latter case, the system is asymptotically stable for arbitrary 

time delays. That is, the system stability is independent of time delays. In this 

case, the stability criteria are relatively simple. If the stability criteria for given 

time delays are considered, things become much more complicated. 

This chapter is devoted to the stability analysis, which can be completed by 
using computer algebra, for the linear dynamic systems with single or multiple 
time delays in state feedback. At first, the analysis of delay-independent stability 
of single-degree-of-freedom systems with two time delays is presented as an il­

lustrative example. Then, the analysis is made for the delay-independent stability 

of high dimensional systems with two time delays on the basis of generalized 
Sturm criterion for polynomials. Afterwards, the stability switch is analyzed in 

detail for high dimensional systems with an increase of a single time delay. To 

show the effectiveness of the approaches to high dimensional systems, the stability 

analysis is made for various examples in engineering, including a model of tall 

building with an active tendon for vibration reduction, an active suspension of 

ground vehicle and a four-wheel-steering vehicle with driver's retardation taken 

into account. 
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3.1 Delay-independent Stability of Single-degree-of­
freedom Systems 

This section deals with the single-degree-of-freedom systems with delayed state 

feedback discussed in Subsection 1.1.1. For simplicity, we can first re-scale Eq. 

(1.1.4) by using the same procedure from Eq. (1.1.10) to Eq. (1.1.12), and then 

study the dynamic equation of system as following 

X(t)+2~(t)+X(t)=UX(t-T])+VX(t-T2)+ J(t) , (3.1.1) 

where ;~O is the damping ratio as usual, , u and v the dimensionless feedback 

gains, T] ~O and T2 ~O the dimensionless time delays in the displacement feed­

back and velocity feedback, respectively. 

To check the asymptotic stability of the steady-state motion x(t) , it is suffi­

cient to study the variational equation that governs the small perturbation Ax(t) 
near x(t) 

(3.1.2) 

Substituting the candidate solution Ax(t)=aeAt into Eq. (3.1.2) yields the follow­

ing characteristic equation 

(3.1.3) 

Given two time delays T] and T2 , Eq. (3.1.2) is asymptotically stable if and only 

if all the roots ofEq. (3.1.3) have negative real parts. 

If there is no time delay in the state feedback, Eq. (3.1.3) becomes a quadratic 

equation in A. 

D(A.,O,O) = A.2 +(2; -v)A.+(l-u)=O. (3.1.4) 

In this case, the asymptotic stability condition given by the Routh-Hurwitz crite­

rion is 

u<l, v<2;. (3.1.5) 

Except for this trivial case, Eq. (3.1.3) is transcendental. It is almost impossible to 

check the system stability by solving Eq. (3.1.3) for the infmite number of roots. 

Thus, it is not an easy task to give simple stability criteria for the delay differential 

equations like Eq. (3.1.1). 

In general, the criteria of delay-independent stability are much simpler than 

those for the stability of a system with given time delays. Hence, they have re-
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ceived much attention over the past decades, see, for example, (Qin et al. 1989) 
and (Gopalsamy 1992). As the simplest case, the dynamic systems with a single 
time delay have been intensively studied and the delay-independent stability crite­
ria in terms of pure mathematical parameters have been given in (Qin et al. 1989) 

and (Mori and Kokame 1989). Yet, fewer successful studies have been made for 

the dynamic systems with multiple time delays and no practical stability criterion 
has been available. For instance, the sufficient condition given in (Wang and 

Wang 1993) requires very tedious computation for exponential matrices, while the 

concise criterion proposed in (Wang and Wang 1996) is not applicable to the dy­

namic systems with multiple time delays. 
A practical problem in the design of feedback controllers is how to select the 

appropriate feedback gains u and v such that the controlled dynamic systems are 
asymptotically stable if any time delays exist in the controllers and actuators. 

Sometimes, the feedback gains u and v might have been designed according to a 

control strategy, say, LQG, but the time delays in the controller and actuators were 

not taken into consideration in the previous design. One may wonder whether the 
controlled dynamic system is asymptotically stable and robust with respect to the 

variation of the feedback gains. However, the archival publications dealt with the 

stability criteria in terms of pure mathematical parameters only, instead of the 

feedback gains. 

The aim of this section is to find the practical criteria of delay-independent sta­

bility for the damped vibrating systems governed by Eq. (3.1.1) when two time 

delays appear in the state feedback. A sufficient and necessary algebraic condition 
of delay-independent stability is derived first. Then, an equivalent condition of 
delay-independent stability in terms of feedback gains u and v is discussed and 

the region of delay-independent stability on the plane of (u,v) is given. 

3.1.1 Stability Criteria 

As stated in Theorem 2.2.6, Eq. (3.1.1) is delay-independent stable if all the roots 

of D(A,O,O) have negative real parts and the critical condition D(iO),I1,Iz )=0 has 

no real root 0) for any given II and I2 . In what follow, we look for the necessary 

and sufficient condition, under which D(iO),I1 ,I2 )=0 has no real root 0) for any 

given II and I z . 
It is obvious from Eq. (3.1.3) that D(iO),I1 ,I2 )=0 gives 

(3.1.6a) 
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or 

(3.1.6b) 

Both Eqs. (3.1.6a) and (3.1.6b) have the same form 

(l_m2)2 +(2t;m)2 =u2 +(vm)2 +2uvmsin(mT2 -mT1), (3.1.7) 

namely, 

(3.1.8) 

If D(im,T1,T2)=0 has real root m for some T] and T2, so does Eq. (3.1.8). 

Conversely, if there are m =I- 0, T1 and T2 satisfying Eq. (3.1.8), then either Eq. 

(3.1.6a) or Eq. (3.1.6b) holds. Thus, there exists a non-negative number OeR 

such that either 

or 

I-m2 +2it;m=exp(-imO){u+ivmexp[im(T1-T2)]}' O+T2 -T1;;?:0 (3.1.9b) 

is true. This fact leads to D(im,O-T2 +T1,O)=0 or D(im,O,O-T1 +T2)=0. That is, 
for given time delays f t=O+T1-T2;;?:0, f 2=O or ft=O, f 2=O+T1-T2;;?:0, 

D(im,f1,f2)=0 holds and gives a contradiction. If m = 0 satisfies Eq. (3.1.8), 
then u = -1 . There follows D(O, TJ , T 2) = 2 =I- 0 . 

The above analysis can be summarized as the following conclusion. 

Theorem 3.1.1 Given two time delays T1;;?:0 and T2;;?:0, D(im,T1,T2)=0 hasno 
real root m if and only ifEq. (3.1.8) has no real root m other than zero. 

As both sides ofEq. (3.1.8) are even functions in m, it is sufficient hereinafter 

to study the case of m;;?:O only. 

(1) The case of equal time delays 

When T1 =T2 =T, Eq. (3.1.8) becomes 

(3.1.10) 

where 

p=4t;2_2-v2, q=l-u2. (3.1.11) 

Equation (3.1.10) has four roots in the form 
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(3.1.12) 

The number of real roots among them depends on the combination of parameters 

p and q as follows. 

(a) p2 -4q<0 : none of the roots is real. 

(b) p2-4q?0, p>O, q>O: none of the roots is real. 

(c) p2-4q?0, p<O, q?O: all of the roots are real. 

(d) p2-4q?0, q<O: the roots w2 and w4 are real. 

p2 
q=-

4 

(c) 

(d) 

q 

(d) 

p 

Fig. 3.1.1. Delay-independent stable region, containing the non-negative half p -axis, on 
the plane of (p,q) when 'I ='2. 

These cases are shown on the plane of (p,q) in Fig. 3.1.1, where the shaded 

region represents the parameter combinations that guarantee the system stability 

independent of time delays. Remind that Eq.(3.1.10) could have a solution w = 0, 

we see that the delay-independent stability conditions can be simplified to 

p? 0, q? 0 or p < 0, p2 - 4q < O. 

(2) The case of unequal time delays 

To study the case when 'I *'2' three functions are defined as following 

{
g(W)=w4 + pw 2 +q-rwsin[w('2 -T1 )], 

~(W)=W4 + pw2 +q-lriw , 

g(w)=w4 + pw2 +q+lriw , 

where r=2uv. It is obvious that ~(O)=g(O)=g(O)=q and for all w?O 

g(w)$.;g(w)$.;g(w) . 

(3.1.13) 

(3.1.14) 

(3.1.15) 
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In the analysis of delay-independent stability, the time delays 1") and 1"2 can be 

arbitrary non-negative numbers. So, they can be chosen such that g(cv)=g(cv) or 

g(cv)=g(cv) for any given cv~O. Thus, g(cv) has no root on (0, +00) if g(cv»O 
for all cv~O, or g(cv)<O for all cv~O. However, the second case is obviously im­

possible since the leading coefficient of g( cv) is positive, which implies that 

g( cv »0 holds for sufficiently large positive cv . 
Now, we derive a condition for checking g(cv»O subject to cv~O. The de­

rivative of g( cv) with respect to cv reads 

g'(cv)=4cv3 +2pcv-lrI· (3.1.16) 

To look at the roots of this cubic polynomial, a new parameter is introduced as 

following 

(3.1.17) 

The solution of polynomial g (cv) falls into one ofthe cases. 

(a) If 6>0, g'(cv)=O has one real root and a pair of conjugate complex roots 

(3.1.18) 

where 

a=VIrl+~ fJ=VIrI-~ () = -l+i/3 
8 ' 8 ,) 2' 

-1-i/3 
(}2 = . 

2 
(3.1.19) 

(b) If 6 =0, g'(cv )=0 has three real roots 

(3.1.20) 

(c) If 6<0, then p<O and g'(cv)=O has three real roots 

O1,=2~-P cos(!...), 012=2 UCOS(!...+ 211:), 013=2 Ucos(!...+ 411:), (3.1.21) 
63 -';-6" 33 -';-6" 33 

where 0 < r < 11: is defined by 

(3.1.22) 

In this case, both CV2 <0 and CV3 <0 are true since we have r 13+ 2n 13E(2n 13, Jt) 

and r 13+4rr 13E( 4rr 13, 5Jt 13) . 
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The above analysis indicates that only the root ml is positive in these cases. 

This fact, together with the inequality g'(O)= -1rI~0, leads to 

g'(m)<O for mE(O,ml) and g'(m»O for mE(ml'+oo). (3.1.23) 

This implies that ~(ml) is the minimum of ~(m) on [0, +00). Hence, ~(m»O 

holds true for all m~O provided that ~(ml»O. If this is the case, g(m»O holds 

for all m~O, TI ,T2 ~o . 
In summary, the delay-independent stability criterion can be stated as follows. 

Theorem 3.1.2 Equation (3.1.1) is delay-independent stable for any time delays 

TI and T2 if and only if either of the following two sets of inequalities holds 

p~O, q ~ 0, 

p<O, p2 -4q<0, ~(ml»O, 

where ~(m) is defined in Eq. (3.1.14) and 

&0, 

0<0. 

(3.1.24a) 

(3.1.24b) 

(3.1.25) 

Given a system, the stability test based on Theorem 3.1.1 is an easy task includ­

ing simple algebraic computation only. Table 3.1.1 shows 4 examples. 

Table 3.1.1. Delay-independent stability of 4 illustrative examples 

Example System Parameter Stability Test Conclusion 

3.1.1 ~= 0.10 p=-1.963, q=0.9900 Delay-independent stable 

u= 0.10 p2 -4q=-0.1086 

v= 0.05 g(m,)= 0.0172 

3.1.2 ~= 0.10 p=-1.963, q=0.9100 Not delay-independent 

u= 0.30 p2-4q=0.2114 stable 

v=0.05 g(m,)= 0.0826 

3.1.3 ~= 0.50 p=-1.250, q=0.7500 Not delay-independent 

u= 0.50 p2 -4q=-1.436 stable 

v= 0.50 g(m, )=- 0.0584 

3.1.4 ~= 0.50 p=-1.090, q=0.6400 Delay-independent stable 

u= 0.60 p2 -4q=-1.372 

v= 0.30 g(m,) =0.0637 
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3.1.2 Stability Criteria in Terms of Feedback Gains 

In this subsection, we study all possible combinations of feedback gains that guar­

antee the delay-independent stability of Eq. (3.1.1). Let D denote the region of 

those combinations on the plane of (u, v), and Do the region where the corre­

sponding system with identical time delays is delay-independent stable. For sim­

plicity, we refer to these regions as the regions of delay-independent stability. It is 

obvious that (O,O)EDcDo if s>O. 

(1) The case of equal time delays 

By substituting Eq. (3.1.11) into Eq. (3.1.13), we have 

(3.1.26a) 

or 

namely, 

(3.1.27a) 

or 

(3.1.27b) 

The second inequality in Eq. (3.1.27a) and the first inequality in Eq. (3.1.27b) are 

a pair of contradictory bounds for v2 • To gain an insight into the second inequal­

ity in Eq. (3.1.27b), we can find all intersections of the curve 

(3.1.28) 

with the axes of u and v. They are 

u=O, {
±2S, 

V= ±2~s2-1, (3.1.29a) 

v=O, (3.1.29b) 

From Eq. (3.1.29), it is easy to see that this curve, like an ellipse, has a pair of in­

tersections on the u and v axes respectively, if and only if the system is under­

damped in the usual sense. Once the system is over-damped, the curve has no in-
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tersection on the u axis, but four intersections on the v axis. In fact, two separated 

ellipses appear in this case. Imposing 

we can determine the extreme values of u on these two ellipses 

u=±l. 

(3.1.30) 

(3.1.31) 

From the above analysis, the criterion for delay-independent stability is deter­

mined for different damping ratios as following and the corresponding regions of 

delay-independent stability is shown in Fig. 3.1.2. 

(a) If 05,S5,1/.J2, Do is surrounded by an ellipse. That is, 

(3.1.32) 

(b) If 1/~2<S5,1, the boundary of Do is composed of two arcs of an ellipse 

and two sides of a rectangular, which are described by 

(3. 1.33 a) 

or 
/ 

(3.1.33b) 

(c) If s > 1 , the boundary of Do consists of two sides of a rectangular and two 

arcs from two ellipses governed by Eq. (3.1.33), too. 

a. v 

u 

-2( -2( 

Fig.3.1.2. Regions of delay-independent stability on the plane of (u,v) for different 
damping ratios when '1 ='2; a. 05,S5,l/.J2 , b. 1l.J2<S5,l, c. s>l 

Theorem 3.1.3 The region Do of delay-independent stability of Eq. (3.1.1) 

with equal time delays is symmetric with respect to both u and v axes and is 

connected and bounded in the rectangle {(u,v)llul5,l,lvl5,2s}. 

Hence, it is the damping that makes the delay-independent stability possible. 
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(2) The case of unequal time delays 

If r l 7:-r 2, the boundary of D yields !I..( WI )=0 . However, it is almost impossible 

to solve !I..(wI)=O for the explicit expression of the boundary. Thus, a qualitative 

analysis of region D is made here. As p, q, Irl, p2 -4q, r and !I..( WI) are even 

functions in u and v, the region D should be symmetric with respect to both u 
and v axes. So, attention is paid only to the first quadrant of (u, v) plane. 

For u:2: 0 and v:2: 0 , it is easy to verify that 

{
ap =0 
au ' 
a:, =-2v~0, 

and 

aq 
-=-2u~0, au 
aq =0 
av ' 

a 2 au (4q-p )=-8u~0, 
a (3.1.34) 
_(4q_p2)=4pv~0 with p<O 
av 

since !I..'(wI)=O. These inequalities imply that if a given system with ;,uo and Vo 

is delay-independent stable, so is the system with ;, Vo and O~u~uo or with 
;, Uo and O~v~vo. 

Example 3.1.5 As testified in Example 3.1.1, the system with ;=0.1, u=O.l 
and v=0.05 is delay-independent stable. According to the analysis above, the 

system with ;=O.l,v=0.05 and O~u~O.I, or with ;=0.1, u=O.1 and 
0~v~0.05 is delay-independent stable, too. 

Moreover, Eq. (3.1.35) leads to 

dvl 
du 1[(",,)=0 

1 
<0. (3.1.36) 

Hence, the boundary defined by !I..(WI)=O on the first quadrant of (u,v) plane is a 

simple curve. Along the boundary, v decreases with an increase of u . 
From the above analysis on D, another stability criterion independent of time 

delays is also available. 

Theorem 3.1.4 The region D of delay-independent stability of Eq. (3.1.1) with 

unequal time delays is also symmetric with respect to both u and v axes and is 
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connected in the bounded Do. Let U ={(u,v)llul~a1,lvl~a2} , then it is sufficient to 

check (a1,a2)ED in order to make sure that U cD holds. 

Example 3.1.6 Consider a system with S=0.5. From Theorem 3.1.2 and Ex­

ample 3.1.4, it is obvious that [-0.6, 0.6]x[-0.3, O.3]cD holds. This rectangular 

can be broadened in D by further numerical tests. For example, we can ftrst ftx 

U= 0.6 and choose a v larger than 0.3, say v=0.5. Direct computation gives 

p=-1.250, q= 0.64, p2_4q=_ 0.9975 and g(w1)=- 0.2567. This indicates that 

the system is not delay-independent stable and such a choice of v is too large. If a 

v less than 0.5, say v= 0.34, is taken as the second try, then p=-1.1156, 

q=0.6400, p2-4q=-1.3154 and g(w1)=0.0073. Thus, the system is delay­

independent stable and a larger rectangular [-0.6, 0.6]x[-0.34, 0.34]cD is ob-

tained. 

0.1 
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Fig. 3.1.3. Regions of delay-independent stability on the plane of (u, v) for different 

damping ratios; a. S =0.05 , b. s =0.5 ,c. s =1.0 , d. s =1.5 
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For a given system, the region of delay-independent stability can be determined 
by using a simple short routine involving similar tests in Example 3.1.6. The typi­

cal regions of delay-independent stability for two under-damped systems, the 

critically damped system and an over-damped system are shown in Fig. 3.1.3, 

where the regions bounded by solid lines and curves are for distinct time delays 

and those with dashed boundaries are for equal time delays, respectively. 

3.2 The Generalized Sturm Criterion for Polynomials 

As shown in Subsection 3.1.1, the key step in testing the delay-independent stabil­
ity of a system is to determine the number of real roots of a polynomial. Given a 

real polynomial with constant coefficients, the classical Sturm criterion gives a 

full answer to this problem. However, it does not work if the polynomial of order 

larger than 3 involves any unknown parameters. This case often happens when the 

delay-independent stability of a high dimensional system is analyzed in the design 
phase. Fortunately, the complete discrimination system for polynomials recently 

developed in (Yang et al. 1996a, 1996b), and is called the generalized Sturm crite­

rion hereafter, offers a powerful tool to determine the number of a polynomial 

with unknown parameters. To acquire a good understanding of the theory, a brief 
review is made to the classical Sturm criterion first, and then some basic facts 

about the generalized Sturm criterion are presented in this section. 

3.2.1 Classical Sturm Criterion 

Definition 3.2.1 Given a real number sequence 11,/2 ," ,,1. under the condition 

1I/2 ,,·I.i:O, the sequence [SI,S2'''·'S.] with s;=sgn(l;),i=I,2,"',n is called the 
sign table of the sequence. The number of variation of signs of the sequence is the 

number of negative pairs in 11/2 , 12 / 3 , "., 1'_11 •. 
As a simple example, the sign table of the sequence 1,3, -2, 1, -4, -10 ,-1,4,2 

is [1, 1, -1, 1, -1, -1, -1, 1, 1] , and the number of variation of signs of is 4. 

If a sequence contains any zeros, the number of variation of signs is defmed as 

the number of variation of a new sequence revised by removing the zeros. For in­

stance, the number of variation of signs of sequence -3, -5, 0, 3, 0, 2, -6, ° is 2, 

while the number of variation of signs of sequence 0, -3, 2 is 1. 

Definition 3.2.2 Suppose that f(x) is a real polynomial without repeated 

roots. A sequence of real polynomials 
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fo(x)=f(x), J;(x), ... , fs(x) (3.2.1) 

is called the Sturm sequence of polynomial f(x) if the following four conditions 

hold. 

(a) Any two neighboring polynomials in Eq. (3.2.1) have no common roots. 

(b) The last polynomial /,(x) has no real roots. 

(c) If there exists an integer k yielding 1:$;k:$;s-1 such that fk(a)=O, then 

fk-l (a)fk+l (a)<O ; 

(d) If f(a)=O, then, there exists a sufficiently small positive number B such 

that fo(k)J;(k)<O for kE(a-B, a), and fo(k)J;(k»O for kE(a, aH). 

Upon the basis of these concepts, the famous classical Sturm criterion can be 

stated as following. 
Theorem 3.2.1 Assume that a real polynomial f(x) has no repeated roots and 

has p real roots on the interval (a,fJ), satistying f(a)f(fJ)*O. If the numbers 
of variation of signs of the sequences 

fo(a),J; (a),·· .,j, (a) 

fo (fJ), J; (fJ), ... , j, (fJ) 

are v(a) and v(fJ) respectively, then p=v(a)-v(fJ). 

(3.3.2a) 

(3.2.2b) 

Some rules are available to construct the Sturm sequence of a polynomial 

without repeated roots. What follows is the most popular way. Let fo(x)=f(x), 

and J;(x)= f'(x) be the derivative of f(x). Dividing f(x) by J;(x) gives the 

polynomial f2 (x) from fo(x)= J; (X)ql (x)- f2(X). The other polynomials in the 
sturm sequence can be constructed in the same way, namely, 

(3.2.3) 

except for the last one by /,-1 (x)= fs(x)qs(x). 

Because only the signs of the Sturm sequence are used in the applications of the 

Sturm criterion, all the positive factors can be dropped out at each step of con­

structing a Sturm sequence. 

Example 3.2.1 Consider a real polynomial 

The corresponding Sturm sequence can be constructed as follows. Let 

fo(x)=f(x)=x 5 +5x4 +5x3 -5x2 -5x-7 , 

J; (x)= !'(x)/5=x4 +4X3 +3x2 -2x-1 . 

(3.2.4) 

(3.2.5a) 

(3.2.5b) 
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Dividing fo(x) by j;(x) , we arrive at fo(x)=j;(x)(x+1)-2(x2+1)(x+3). Be­

cause 2( x 2 + 1) is a positive factor, we can take 

(3.2.5c) 

Dividing j;(x) by f2(X) , we have j;(X)=f2(X)(X3+X2_2)-(-5). There follows 

A(x)=-5. (3.2.5d) 

As a result, the Sturm sequence of f(x) consists of four polynomials fo(x) , 
j;(x), f2(X), f3(X). 

To look at the relation between the real roots of f(x) in Eq. (3.2.4) and the 

number of variation of signs of its Sturm sequence, some cases are listed in Table 

3.2.1. The Sturm criterion enables one to see that f(x) has only one real root 

on (-00, +00) and the root falls into the interval (1, 2) . 

Table 3.2.1. The sign tables of the Sturm sequence ofEq. (3.2.4) 

x fo(x) .t; (x) f2(X) f3(X) V 

-00 -I -I -I 2 

0 -I -I -1 2 

1 -1 -1 2 

2 -1 

+00 -1 

If f(x) has any repeated roots, the last polynomial fs(x) in the Sturm se­

quence is the (non-constant) greatest common divisor of fo(x) and j; (x). That 

is, fs (x)=d(x)gs (x) , where d(x)= g.c.d.(f(x),f'(x» and the leading coefficient 

is set to be 1, while g s (x) is the leading coefficient of fs (x) . Let 

(3.2.6) 

Then, go(x) is a real polynomial without repeated roots, and go(x) , gl (x) , ... , 
g s (x) is the Sturm sequence of go (x) . Therefore, the Sturm criterion still works 

for the polynomials with repeated roots in the sense that each of the repeated roots 

is counted only once. 

3.2.2 Discrimination Sequence 

In the generalized Sturm theory, the discrimination sequence plays the same role 

as the Sturm sequence in the classical Sturm criterion. The discrimination se-
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quence can be constructed by using the so-called Bezout matrix, which is a useful 

concept in the theory of polynomials and can be defined in different ways. 

To introduce the concept of the Bezout matrix, two real polynomials of order n 
are considered as following 

(3.2.7a) 

(3.2.7b) 

They can be recast in the form 

(3.2.8) 

where 

I" ( ) i-I i-2 
J i2 X = an_i+lx +an_i+2X + .. ·+an , 

(3.2.9) 

Furthermore, a polynomial is introduced as following 

(3.2.10) 

The Bezout matrix is defined as the coefficient matrix of n polynomials 

Pn-i+1 (x), i=I,2,,· ",n in the form 

[

dll dl2 
d21 d22 

dnl dn2 

... d 1 In 

... d2n 
. . 

dnn 

(3.2.11) 

Definition 3.2.3 The discrimination matrix of f(x) is the Bezout matrix of 

f(x) and g(x) = O·xn + f'(x), and denoted by discr(f) . 
The discrimination matrix of f(x) can be proved in an explicit form as below 

discr(f)=(cn_i,j_I)' i,j=l"",n, 

min(i,j)-I 

cij =[n-max(i,j)]aiaj - ~)i+ j-2p)ap ai+j_p ' 

p=o 

(3.2.12) 
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where ak =0 if k<O or k>n. 

Definition 3.2.4 The discrimination sequence of f(x) is defined as the princi­

pal sub-determinant sequence taken in order and denoted by 

(3.2.13) 

Algorithm 3.2.1 The following short MAPLE routine discr suggested in (Yang 

et al. 1996b) can be used to derive the discrimination sequence of a polynomial 

automatically. 

> discr:=proc(poly,var) 
> local f, g, tt, d, bz, i, ar, j, mm, dd: 
> f:=expand(poly): d:=degree(f,var): 
> g:=tt*varAd+diff(f,var): 
> with(linalg) : 
> bz:=subs(tt=O,bezout(f,g,var): ar:=[ ]: 
> for i to d do 
> ar:=[op(ar) ,row(bz,d+l-i .. d+I-i)] od: 
> mm: =matrix (ar) : dd:=[ ]: 
> for j to d do 
> d:=[op(dd) ,det(submatrix(mm,l .. j,l .. j))] od: 
> dd:=map(primpart,dd) 
> end: 

The repeated roots of a polynomial f(x) are determined exactly by the greatest 

common divisor of f(x) and f'(x). The sequence of sub-resultants of f(x) and 

f'(x) are defined as the sequence of multiple order factors of f(x), and is denot­

ed by LI 0(1), LI, (I), ... , LI n-/f) . 

3.2.3 Modified Sign Table 

To state the generalized Sturm criterion in a compact form, it is helpful to intro­

duce the concept of modified sign table first. 

Definition 3.2.5 Given a real number sequence 1,,l2,··,ln with 1,:;t:0. The 

modified sign table [&" &2' ... , en] of[s" S2, ... , sn] with Si=Sgn(l;), i=1,2,··,n 
is a table generated in line with the rules as following. 

(a) For any segment [Si,Si+"Si+2, ···,Sj+j] of a given sign table with Si:;t:O, 

Si+,=Si+2=Si+3 "'=Si+j_,=O and Sj+j:;t:O, [Sj+"Sj+2,"·,Si+j_'] is replaced by 

[-S;, -Sf' Si' Si'-S;, -Si' Sf'S;,···]. 
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(b) All the other entries in the sign table are unchanged. 

For example, the modified sign table of [1, -1, 0, 0, 0, 0, 1,0,0,0, -1, 0] should 

be [1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 0] according to these two rules. 

3.2.4 Generalized Sturm Criterion 

On the basis of discrimination sequence and the corresponding modified sign ta­

ble, the generalized Sturm criterion can be summarized as following, see (Yang et 

al. 1996b). 

Theorem 3.2.2 Let f(x) be a polynomial of order n, Dl (f),D2 (f),.. ·,Dn (f) 

be the corresponding discrimination sequence, and u;=Dqi , i=I,2,.··,k be the i­

th nonzero term of the discrimination sequence, where U o =1. Let qo =0, 
r;=q;+I-q;-I, i=0,1,2,.··,k-l. Assume that the number of variation of signs in 

the modified sign table is s. If D/ (f):;tO and Dm (f)=0, m>/ , then the following 

facts are true. 

(a) The number of distinct pairs of conjugate complex roots of f(x) is s. 

(b) The number of distinct real roots of f(x) is /-2s, which satisfies 

k-l 

/-2s= L(_I)'iI2sgn(Ui+l). 
;=0, rj are even O'i 

(3.2.14) 

(c) a is a root of f(x)with multiplicity p if and only if it is a root of 

,1n_/(f) with multiplicity p-l. 
(d) Except for some positive factors, ~(f),D2(f),···,D/(f) is the discrimi­

nation sequence of polynomial f / g.c.d(f ,J') , which has no repeated roots. 

Example 3.2.2 Let f(X)=XI8_XI6+2xlS_XI4_XS+X4+X3_3x2+3x_l. The 

sign table of the corresponding discrimination sequence is [1, 1, -1, -1, -1, 0, 0, 0, 

-1, 1, 1, -1, -1, 1, -1, -1, 0, 0]. Thus, the modified sign table is [1, 1, -1, -1, -1, 1, 1, 

-1, -1,1,1, -1, -1,1, -1, -1, 0, 0], and the number of variation of signs is 7. As a 

result, the polynomial f(x) has two distinct real roots and 7 distinct pairs of 

conjugate complex roots. Note the fact that g.c.d(f,J')=x2-x+l, the remaining 

two roots of f(x) are a pair of conjugate complex roots repeated to one of the 

above 7 pairs. 

Example 3.2.3 To ensure that a polynomial of order 6 with positive leading co­

efficient has no real roots, it is necessary to make sure that one of the 14 cases in 

Table 3.2.2 holds true. 
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Table 3.2.2. 14 possible modified sign tables of the discrimination sequence of a polyno-
mial of order 6 with positive leading coefficient 

D[(f) D 2 (f) D3 (f) D4 (f) Ds(f) D6 (f) 1=2s 

-1 0 0 0 0 s=1 

-1 0 0 

-I -1 0 0 s= 2 

-1 0 0 

-1 -1 

-1 -1 -1 -1 

I 1 -1 -1 

-1 -1 -1 

-1 -1 -1 s= 3 

-1 1 -I 
-I -1 1 -1 

-1 -I -1 -1 

-I -1 -I -1 

-1 -1 -1 

Theorem 3.2.2 gives full information about the numbers of real roots and com-

plex roots of a polynomial. It is the case of 1=2s for s=I,2,.·· that serves the pur-

pose of analysis of delay-independent stability. 

3.3 Delay-independent Stability of High Dimensional Sys­
tems 

Now, consider the delay-independent stability of a linear dynamic system with two 

time delays, the characteristic equation of which takes the following form 

(3.3.1) 

where 1"[ ~o and 1" 2 ~o are the time delays, P( A), Q[ (A) and Q2 (A) are the real 

polynomials under the conditions deg(P)=n>deg(Qj), j=1,2. The system of 

concern is delay-independent stable if and only if each of its characteristic roots 

has negative real part for all given 1"[ ~o and 1"2 ~O. Since D(A,1"[ ,1"2) is analytic 

with respect to A, 1"[ and 1"2. Thus, any root ..1.=..1.(1"[,1"2) of D(A,1"[,1"2) is con­

tinuous with respect to 1"[ and 1"2. These facts lead to the following theorem. 
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Theorem 3.3.1 The linear delayed dynamic system governed by Eq. (3.3.l) is 

delay-independent stable if and only if the following two conditions hold true. 

(a) The polynomial P(A)+QI (A)+Q2(A) , corresponding to the case £1 =£2 =0, 

has only the roots with negative real parts. 

(b) Equation D(iw'£1 '£2)=0 has no real root w for all £1 ~O and £2 ~O. 

In general, the Routh-Hurwitz criterion is available to examine the first condi­

tion. What follows is to discuss how to check the second condition. Let 

{
PR(W)=Re[p(iW)], PI (w)=Im[P(iw)], 

QjR (w)=Re[QjR (iw)], QjI (w)=Im[QjI (iw)], j=1,2. 

Eq. (3.3.1) has no roots ±iw * 0 for all £I~O and £2~0 if and only if 

pi (w)+ p/ (W)-[QI2R (W)+QI21 (W)+QiR (W)+QiI (w)] 

-2[QIR(W)Q2I (W)-QIl (W)Q2R (w)]sin[w(£2 -£1)] 

-2[QII (w)Q2I (W)+QIR (W)Q2R (w)]cos[w( £2 -£1 )]=0 

(3.3.2) 

(3.3.3) 

has no non-negative root w for all £1 ~O and £2 ~O. The two harmonic terms 

above can be combined into the one with a phase shift rp so that Eq. (3.3.3) be­

comes 

(3.3.4) 

As PR(w), QjR(W), j=l;2 are even functions and p/(w), Qjl(w), j=l;2 are odd 
functions respectively, we have 

D(O, £1' £2) = PR (0)+ QIR (0) + Q2R (0) (3.3.5) 

If w = 0 satisfies Eq. (3.3.4), then pi (0) - [QI2R (0» + QiR (0)] = O. If in addition 

we assume that D(0'£P£2)=0, then PR(0)=QIR(0)=Q2R(0)=0, which con­

tradicts the Hurwitz stability of P(A) + QI(A) + Q2(A) . Thus D(0'£I'£2) * 0 for 

all given delays £1 and £2' 

Thus, if £1 = £2 = £, D(iw,£I,£2)=0 has no real root w for all £ ~ 0 if and 

only ifhe left-hand side ofEq. (3.3.3), denoted by F(w) , 

F(w)=w2n +b w2(n-l) +b w2(n-2) + .. ·+b w2 +b 
1 2 n-I n (3.3.6a) 

has no real roots other than zero. If £1 *£2' an even function G(w) is defined as 
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Hence by following the same routine in the proof of Theorem 3.1.1, we see that 
Eq. (3.3.4) has no non-negative roots for all <1;;::0 and <2;;::0 if and only if G(m) 

has no positive roots or G(O) = 0, namely, G( ( 2 ) has no real roots other than 

zero. Obviously, G(m) may not be a polynomial for some systems. This is the 

case for some systems with delayed feedback control. 
So we arrive at an important theorem for the delay-independent stability. 

Theorem 3.3.2 D(im'<I,<2)=0 has no real root m for all <1;;::0 and <2;;::0 if 

and only if the polynomial F(m) or G(m2) has no real root m other than zero. 

As a result of direct application of the generalized Sturm criterion, Theorem 

3.3.2 can be more specifically stated below. 

Theorem 3.3.3 D(im,<I,<2)=0 has no real root m for all <1;;::0 and <2;;::0 if 

and only if F(O) = 0 (G(O) = 0), or the modified sign table of F(m) (or G(m2» 
is subject to the condition 1=2s for s= 1, 2, ... , n or 2n, where I and s are the 

number of non-zero terms and the number of variation of signs in the correspond­

ing discrimination sequence, respectively. 

Based on the above analysis, an approach to the delay-independent stability can 
be summarized as below. 

Algorithm 3.3.1 

(a) Work out Eq. (3.3.3) and the corresponding polynomial F(m) or G(m2). 

(b) Determine the discrimination sequence corresponding to F(m) or G(m2) 

by using the MAPLE routine discr. 
(c) Justify the stability. The system is delay-independent stable if and only if 

P(A)+QI (A)+Q2 (A) is Hurwitz stable, and F(O) = 0 (G(O) = 0) or the condition 

1=2s holds for some s= 1,2,3,4, "., nor 2n. 

Remark 3.3.1 The computation in stability test can be greatly reduced if the 

terms in the discrimination sequence are factorized. 

In practice, especially in the design phase of a controlled system, it is often de­

sirable to know the delay-independent stable region in a space spanned by the de­

sign parameters. Once the discrimination sequence is obtained and each term is 

factorized, each factor can be set to be zero and the corresponding graph can be 

plotted. These graphs divide the parameter space into several sub-regions. Each of 

them can be easily determined to be or not to be the delay-independent stability 

region by checking the corresponding modified sign table. The points satisfy 
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F(O) = 0 (or G(O) = 0) may be on the boundary of the stable region. This proce­

dure will be demonstrated through a few examples. 

Example 3.3.1 Consider again the single-degree-of-freedom system with two 

distinct time delays in the paths of displacement feedback and velocity feedback, 

respectively. As shown in Section 3.1, the characteristic equation of the system is 

Comparing Eq. (3.3.7) with Eq. (3.3.1) gives 

P(A)=A,z+2;A+l, Ql(A)=-U, Q2(A)=-VA. 

According to Eq. (3.3.6), we have 

G(0)2)=0)8 + p0)4 +r0)2 +q, 

where 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

We assume hereinafter that v<2; and U <1 . These two inequalities are the suffi­

cient and necessary conditions for the asymptotic stability of systems free of time 

delay. In order that the system is delay-independent stable, it is sufficient and nec­

essary to make sure that Eq. (3.3.9) has no real roots. 

By using MAPLE routine discr, we obtain the discrimination sequence of 
G( 0)2) as following 

where 

do =0, d 1 =-p, d 2 =_p2, d 3 =_(2p 3 -8pq+9r2) , 

d4 =(4p 3 -48pq+27r2)r, d 6 = q, 

d s =-(27r4 +4p 3r 2 -144pqr2 -16p4q+128p2q2 -256q3). 

(3.3.11) 

(3.3.12) 

Because the expressions of di , i=O, 1, ... , 6 are even functions with respect to U 

and v, it is sufficient to study the case for positive U and v only. When the sec­

ond term and the third term in the discrimination sequence vanish, the fIrst three 

terms of the modifIed sign tables must be 1, -1, -1. If the number of variation of 

signs in the modifIed sign table is 2, the non-zero terms in the modifIed sign table 

has 4 entries to ensure that the system is delay-independent stable. Hence, the 

modifIed sign table of the discrimination sequence should be [1, -1, -1, 1,0,0,0, 

0]. When the number of variation of signs in the modifIed sign table is 3, the sixth 
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entry III the modified sign table must be negative to guarantee the delay­

independent stability. Therefore, there are three cases for the modified sign tables 

corresponding to the delay-independent stability. They are [1, -1, -1, 1, -1, -1, 0, 

0], [1, -1, -1, 1, 1, -1, 0, 0] and [1, -1, -1, -1, 1, -1, 0, 0]. In the case when the signs 

in the modified sign table changes 4 times, the eighth term in the modified sign ta­

ble should be positive for delay-independent stability, and there are totally 10 

cases. Hence, the system is delay-independent stable if and only if the modified 

sign table of its discrimination sequence is one of the 14 cases listed in Table 

3.3.1. 

Table 3.3.1. 14 possible modified sign tables of the discrimination sequence of G(w 2 ) III 

the case of delay-independent stability 

DIU) D 2(f) D 3(f) D 4 (f) Ds(f) D6 (f) D7 (f) Dg(f) 1=2s 

-1 -1 0 0 0 0 s= 2 

-1 -1 -1 -1 0 0 s= 3 

-1 -1 -1 0 0 

-1 -1 -1 -I 0 0 

-1 -1 -1 -1 -1 s= 4 

-I -1 -1 -1 -1 

-I -I -I -1 1 -I 
-1 -1 1 -1 -1 

-1 -1 -I 1 1 -I 
-1 -1 -I 1 

-1 -1 -I 
-1 -1 1 -1 -1 

-1 -1 -1 1 -1 

-1 -1 -1 

In what follows, two case studies are presented to illustrate the analysis of de­
lay-independent stability. 

Case 1 S=0.25. Substituting S=0.25 into Eqs. (3.3.9) and (3.3.10) gives 

d3 = 2 v6 + 10.5 v4 +(10.375-28 u2 ) v2 + 14 u2 -3.28l3, 

d4 = luvl [8 v6 +42 v4 +(-22.5+ 120 u2 ) v2 +(-125.13+ 168 u2 »), 
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(-105-369.25 u 1 +560 u 4 ) v2 + 14.063-134.06 u 2 +376 u 4 -256 u 6 , 

(3.3.13) 

The curve determined by d3 =0 is ellipse-like, as shown in Fig. 3.3.l. The inside 

of the "ellipse" is governed by d3 <0, while the outside by d3 >0. The graph of 

d4 =0 is hyperbola-like, the corresponding sub-region containing the origin is 

governed by d 4 <0 , the other parts by d 4 > 0 . The graph of d s =0 consists of four 

lines, the w-like region and the m-like region are determined by ds <0, and the 

other parts by ds>O. Following the present approach, it is possible to see that 

only the combination (u,v) in the rhombus-like region that makes the system de­

lay-independent stable. For example, in the rhombus-like region, we have d] =0, 

d] >0, d 2 <0, d3 <0, d 4 <0, ds >0 and d6 >0. Thus, the sign table of the dis­

crimination sequence is [1, 0, 0, -1, 1, 1, -1, 1]. There follows the modified sign 

table [1, -1, -1, -1,1,1, -1,1]. This fact indicates that G(m 2 ) has no real roots and 

thus the system is delay-independent stable if the combination of (u, v) falls into 

this region. In the region inside the ellipse-like region but outside the rhombus­

like region, we have d]=O, d]>O, d1<0, d 3 <0, d4 <0, ds<O and d6 >0. 
Hence, the corresponding modified sign table is [1, -1, -1, -1, 1, 1, 1, 1]. There­

fore, the polynomial G(m 2 ) has 4=8- 2x2 real roots and the system is not delay­

independent stable. 

Case 2 (=0.75. This damping ratio results in 

do = 0, d] = v1 -0.25, dz =_d]l <0, 

d3 = 2 v6 -l.5 v4 -(28 U Z +7.625) v 2 -2 u 2 + 1.9688, 

+(63+ 16.75 u 2 -80 u 4 ) v1 +248.06-752.06 u 2 +760 u 4 -256 u 6 , 

(3.3.14) 

As analyzed in the previous case, the delay-independent stable region on the plane 

of (u, v) can be easily determined by checking the modified sign tables of the dis­

crimination sequence and shown as the biggest rhombus in Fig. 3.3.2. For exam­

ple, in the smallest rhombus-like region, we have d] =0, d] <0, d 2 <0, d 3 >0, 

d4 >0, ds >0 and d6 >0. Hence, the sign table of the discrimination sequence is 
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[1,0,0, 1, -1, 1, 1, 1]. There follows the modified sign table [1, -1, -1, 1, -1, 1, 1, 
1]. This indicates that G((02) has no real roots and the system is delay­

independent stable if a parametric combination falls into this region. In the region 

inside the biggest rhombus-like region subject to 0.5<lvl<1, we have d, =0, 
d,>O, d 2 <0, d 3 <0, d 4 <0, ds>O and d6 >0. Hence, the sign table of the dis­

crimination sequence is [1, 0, 0, -1, 1, 1, -1, 1] and the modified sign table is (1,-

1, -1, -1, 1, 1, -1, 1]. Thus, the polynomial G( (02) has no real roots and the sys­

tem is delay-independent stable. In the region with the boundary composed of the 

rhombus-like curves, we have d] =0, d, <0, d 2 <0, d3 <0, d4 >0, ds >0 and 

d 6 >0. Thus, the sign table of the discrimination sequence is [1, 0, 0, 1, 1, -1, 1, 

1] ,the modified sign table is (1, -1, -1, 1, 1, -1, 1, 1] and s=4. Thus, G((02) has 

no real roots and the system is delay-independent stable if the parameter combina­

tion falls into this region. On the curves plotted by d2 =0 or d3 =0 or d4 =0 , the 

sign table is [1, 0, 0, 0, 0, 1, -1,1] or [1, 0, 0,1,0,0, -1, 1] or [1, 0, 0,1,1,0,0,1]. 
There follow the modified sign tables [1, -1, -1, 1, 1, 1, -1, 1] or [1, -1, -1, 1, -1, -
1, -1,1] or [1, -1, -1,1,1, -1, -1, 1], respectively. Hence, the system is also delay­

independent stable on these curves. As a result, the system is delay-independent 

stable in the whole biggest rhombus-like region. 

1.5r---~-----:7"<'-----~---' 

v v 

·1 

-0.5 0.5 
u 

Fig. 3.3.1. The rhombus-like region of de- Fig. 3.3.2. The delay-independent stable re­
lay-independent stability on the plane of gion on the plane of (u,v) is the biggest 
(u,v) when t;= 0.25 rhombus-like region when t;= 0.75. 

Example 3.3.2 A set of delay differential equations has been presented in Sub­

section 1.1.1 to describe the dynamics of a tall structure equipped with an active 
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tendon. If the time delays are assumed as TI =T2 =T and the fundamental natural 

frequency is scaled as Wn =1, the equations are simplified to 

{
XI (t) = x 2 (t), 

x2 (1) = -XI (1) - 2~2 (t) - x) (1) + /(1), 

x) (1) = aYXI (t - T) + aox2 (t - T) - ax) (t), 

(3.3.15) 

where XI is the modal displacement, X2 the modal velocity, X) the control force, 

r; the damping ratio, a>O the time constant of hydraulic actuator, rand 0 the 

feedback gains of displacement and velocity, /(1) the external force, respectively. 

The corresponding characteristic equation is 

(3.3.16) 

(1) General case 

When T=O, the system is asymptotically stable if and only if the following 

Routh-Hurwitz stability conditions hold 

a+2r;>0, l+r>O, (a+2r;)(ao+2ar; +1»a(1+r). (3.3.17) 

The first inequality here is always true since a and r; are positive. 

When pO, it is easy to find that F(w) in Eq. (3.3.6a) reads 

F(w)=w 6 +bl w 4 +b2w 2 +b) , (3.3.18) 

where 

bl =a2 +4r;2 -2, b2 =1-2a2 _a 20 2 +4a2r;2, b) =a2(l-r2). (3.3.19) 

The polynomial F(w) has no real roots other than zero only when Irl:5: 1. By us­

ing the MAPLE routine discr, we obtain the discrimination sequence 

1, -bl' 3blb2 -bl) , -7bI2b; -9blb2b) +b1
4b2 +3b;b) +12bi, 

-8b1
2 b; +37 bJ) b; b) -84bJ bi b) +27 bJ

2 b2 bi +bJ
4 bi -4bJ

5 b2 b) 

-12b:b)-81bJbi+16b~+108b;bi, 

b) ( -16bJ
6 bi +8b: b; b) -bJ

4 b; + 144bJ
4 b2 bi - 216bJ) bi -68bJ) bi b) 

+8bJ2 b~ - 270bJ
2 b; bi +144bJ b; b) +972bJ b2 bi - 729b; -16b~ -216bi bi). (3.3.20) 

To reduce the computation, it is beneficial to factorize the above six polynomials 
as following 
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(3.3.21 ) 

where 

(3.3.22) 

That is, the sign tables of Eq. (3.3.20) can be obtained by computing the signs of 

d;, i=O, 1, 2, 3, 4, instead of computing the polynomials in Eq. (3.3.20). 

According to Theorems 3.3.l and 3.3.3, as well as Example 3.2.3, the system is 
delay-independent stable if and only if (a) the inequalities in Eq. (3.3.17) hold 

true, and (b) the modified sign tables of the discrimination coincides one of the 14 

cases oflisted in Table 3.2.2. 

(2) Case studies 

Now, attention is paid to the case when a=2. Substituting a=2 into Eqs. 
(3.3.l9) and (3.3.22) gives 

d 2 =-6484 +(_64,4 +448,2 -240)82 -200 

+896,2 -880,4 -24y2 _48,2y2 +256,6, 

d3 =25686 +(256,4 - 2816,2 + 1408)84 

+[(1152,2 +576)y2 -2048,6 +11136,4 -11520,2 +2000]82 

+4096,8-16896,6+22800,4-10000,2 

+(1024,6 -3072,4 +480,2 +2000)y2 -432y 4, 

(3.3.23) 

When ,=0, it is easy to know that do<O, dj>O, d2 <0, d3 >0 and d 4 <0. 
Thus, the number of variation of signs in the modified sign table [1, -1, -1, -1, -1, -
1] of the discrimination sequence is 1. This implies that the system is not delay­
independent stable since F(w) has 4(=6-2xl) real roots. This fact shows again 

that only damping makes the delay-independent stability possible. 
For the case when, =0.02 studied in (Zhang et al. 1993), we have 

(3.3.24) 
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Hence, 

do = -2.0016 < 0, d] = 2.4987 x 10+ 1252 > 0, 

d2 = -645 4 - 2.3982 X 1025 2 - 2.4019x IOy2 -1.9964 x 102 < 0, 

dJ =2565 6 +1.4069xlOJ5 4 +(5.7646xI02y2 + 1.9954 x IOJ)52 + 

2.0002 x 103 y2 - 432y 4 - 3.9964 

(3.3.25) 

If d 3 >0 or d 3 =0 , the sign table of the discrimination sequence in Eq. (3.3.21) 

is [1, -I, -I, -I, -I, -I] or [I, -I, -I, -1, 0, 0]. In both cases, the number of variation 

of signs is 1. Thus, F( (1)) has 4=6-2 x 1 or 2=4- 2x 1 real roots such that the sys­

tem is not delay-independent stable. Hence, the system is delay-independent stable 

if and only if the feedback gains of control satisty 

(a) d3 <0, 

(b) -I < y, (2 + 2x 0.02)(25 + 2x 2x 0.02+ 1) > 2(1 + y). 

Because the straight line 1.02(25 + 5.08) = 1+ Y on the plane of (y,5) does not 

intersect the boundary dJ =0, the delay-independent stable region is governed by 

dJ <0 only and shown in Fig. 3.3.3. 

Another case study can be similarly made for S =0.5 and the corresponding 

region of delay-independent stability is shown in Fig. 3.3.4. 

0.05 

0.02 
<-- d3=O 

Delay-independent 

° stable region 

-0.02 

-o.Qr.c.,05---_o~.0-2----0~.02----,--J0.05 

r 

Fig. 3.3.3. The delay-independent stable re­
gion of a tall structure with active tendon on 
the plane of (r ,0) when a = 2 and ( = 0.02 

1.2 

0.6 

° 0 
Delay-independent 

stable region 

-0.6 

-1·~1L ---O~.5--~0 --~0.-5-----' 

r 

Fig. 3.3.4. The delay-independent stable re­
gion of a tall structure with active tendon on 
the plane of (r ,0) when a = 2 and ( = 0.5 
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3.4 Stability of Single-degree-of-freedom Systems with 
Finite Time Delays 

As analyzed in Sections 3.1 and 3.3, it is very restrictive for a controlled system to 

be delay-independent stable. For instance, the region of delay-independent stabil­

ity ofEq. (3.1.1) is always bounded in the rectangular {(u, v)llul:5:l, Ivl:5:2s} on the 
plane of (u, v). The region is very small since most mechanical systems are 
slightly damped. In practice, the stability of many controlled systems is only re­

quired for bounded time delays, especially for the short time delays on a bounded 

interval. 
This section, therefore, deals with the system stability when two finite time de­

lays are given. By separating the real and imaginary parts of the critical condition 

D(iw,'I,'2)=0, we have 

{
Re[D(iW, 'I' ,z}]=I-w2 -UCOSW'I -vwsinw'2 =0, 

Im[D(iw"p'2)]=2sw+usinw'l-vwcosw'2 =0. 

Solving Eq. (3.4.1) for u and v yields 

{ 

(1-W2)COSW'2 -2swsinw'2 
u , 

cOS[W('I-'2)] 
v= (1-w 2 )sinw'l + 2swcosw'l . 

wcos[ w( 'I -'2)] 

(3.4.1 ) 

(3.4.2) 

On the plane of (u, v) , Eq. (3.4.2) gives the transition set where at least one char­
acteristic root of Eq. (3.1.3) changes the sign of real part. As both u and v are 
even functions in frequency w, the transition set will be discussed on the semi­

infinite interval WE[O, +(0) only. 

3.4.1 Systems with Equal Time Delays 

If 'I ='2 =, , Eq. (3.4.2) becomes 

{
u =[(1-w2 )cosw,-2swsinw,], 

v=[(l-w2 )sinw,+ 2swcosw,]/ w. 
(3.4.3) 

Thus, the transition set is a continuous curve Ct on the plane of (u, v) when the 

parameter W varies on [0, +(0). It is easy to find from Eq. (3.4.3) that the curve 

C t starts from the point A=(1, 2s + ,) on the plane of (u, v) . As shown in Fig. 
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3.4.1, the curve Cr becomes complicated and intersects itself if the time delay is 

long enough. 

8 6 

6 
4 

4 
2 

v 0 

-2 

-10 0 10 20 30 40 
-4 

-10 -5 0 5 10 15 20 25 
u u 

4 6 

2 4 

v 0 2 

v 0 
-2 

-2 
-4 
-15 -10 -5 0 5 10 15 -6 -4 -2 0 2 4 6 

u u 

Fig. 3.4.1. Transition sets on the plane of (u, v) at ~ =0.05 for various equal time delays 

From the viewpoint of an engineer, one may wonder the critical time delay T m , 

with which the curve Cr just intersects itself at (1, 2s +T m) on the plane of 

(u, v) . According to Eq. (3.4.3), such a time delay yields 

{
(l-OJ 2 )COSOJT m - 2sOJsinOJT m = I, 

(l-OJ 2 )sinOJT m +2SOJCOSOJT m =(2s +T m)OJ. 

This condition can be recast as 

_\ 21'"OJ 
rp=tan -"'-'. 

I-OJ2 

(3.4.4) 

(3.4.5) 

In addition, the self-intersection of curve Cr at (1,2s +Tm) implies that Eq. 

(3.1.10) has two different positive roots when u=1 and v=2s +Tm' From Eqs. 

(3.1.11) and (3.1.12), these two roots are 

OJ\=O, OJ2=FP=~T~+4STm+2. (3.4.6) 
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Substituting OJ in Eq. (3.4.5) with OJ2 yields 

tan(T m ~T~ +4ST m +2+rp)=(2s +T m )~T~ +4ST m +2, 

-I 2s ~T~ +4ST m +2 
tp=tan . 

l-(T~ +4ST m +2) 

(3.4.7) 

Solving Eq. (3.4.7) numerically for the minimal positive root, we obtain the criti­
cal time delay for given damping ratio. As shown in Fig. 3.4.2, the critical time 
delay decreases with an increase of the damping ratio. 

1.9 

1.8 
f~ 

1.6 

1.5 
0.0 0.2 

~ 
~ 

~ I'---.. 

0.4 0.6 
( 

0.8 1.0 

Fig. 3.4.2. Critical time delay versus damping ratio 

Given a time delay 8<Tm , the transition set Co shown in Fig. 3.4.3 does not 

intersect itself. This curve, together with the lines of u=l and v=2s, surrounds a 

shaded region denoted by D1 in Fig. 3.4.3. According to (O,O)cD1 , all combina­

tions of (u,v)ED1 guarantee the system stability for equal time delays TI =T2 =8. 

This region will be called the stability region hereafter for short. 

It should be emphasized that D1 in Fig. 3.4.3 is the unique stability region 

where the feedback gains guarantee the system stability for any equal time delays 

TI =T2 =T~8 . What follows is an intuitive proof of this assertion. 

By differentiating Eq. (3.4.3) with respect to OJ, we have the tangent of Cr at 

the starting location 

Ov 
dv = oOJ 
du au 

T(l-OJ 2) OJ2 -1 
--'------'-COSOJT+(--2--2-2s T)sinOJT 

OJ OJ 
- 2OJ(l +ST)COSOJr+( TOJ 2 -T-2s)sinOJT 

OOJ 
2r+2ST2 

", r+O(T). 
2+4ST+T2 

(3.4.8) 
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If 0::;;.<8, the curves C,. and C" intersect each other near (0,20 as shown 
in Fig. 3.4.3. According to the analysis in Subsection 3.1.2, only the parameter 
combination (u, v) under the conditions p2 -4q ~ 0, p < 0, q ~ ° enables Eq. 
(3.1.10) to have two positive roots. The third inequality here implies that C,. and 
C" intersect each other only in the region of lul<l . Thus, C,. can not enter into 
the stability region D1 if u < -1 . As a result, the combination of feedback gains 
(u,v)ED1 ensures that the system is asymptotically stable for any equal time de­
lays .] =.2 =.::;;8. 

v 

u 

.-.......... ~-C6 

Fig. 3.4.3. Stability region D1 on the plane of (u,v) for '] ='2 =,~o 

v 

u 

Fig. 3.4.4. Transition sets C" and C,. on the plane of (u, v) for equal time delays 

Then, it is easy to see that the system is unstable for any 0<.::;;8 if the combi­
nation of feedback gains (u, v) falls into other shaded regions, say D~ in Fig. 

3.4.4, where the roots of Eq. (3.1.3) seem to have the negative real parts again 
with variation of (u, v) . In fact, even for a very short time delay ., the corre­

sponding spiral C,. will enter into D~ as long as the frequency OJ is high enough. 
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This implies that the system will undergo instability if the disturbance ~(t) in­

volves any harmonic components of sufficiently high frequency. As a result, the 

assertion, made in (Palkovics and Venhovens 1992), that there exist other stability 

regions on the plane of (u, v) is not true. 

3.4.2 Systems with Unequal Time Delays 

In the case of TI 7:T2 , let AT=IT1-T21. It is obvious that both u and v in Eq. 

(3.4.2) will approach to the infinity when mAT-Mnl2,n=1,3,5, .... Thus, the tran­

sition set given by Eq. (3.4.2) in this case is no longer a continuous curve. It con­

sists of infinite number of curves defined by the parametric equation in m on the 

intervals [0, nI2AT), (nI2AT, 3nI2AT), and so on. As analyzed in the previous 

subsection, the boundary of the stability region is a small part of the transition set 

corresponding to the lower frequency m . So, we focus on the transition set in the 

frequency range mE[O, nI2AT). 

Consider first the case when 0<T1 <T2 • The transition set is a curve starting 

from (l,2S' +T1) on the plane of (u, v) and approaches to the infinity when 

m(T2 -Tl)~nl2. It is easy to find that the tangent of the asymptotic line reads 

v (l-m2)sinmTI +2S'mcosmTI 
-~----~~--~--~~~----~------
u m[(1-m2)cosm(TI +nI2)-2S'msinm(TI +nI2)] 

1 n 
----<0. 

m 2(T1-T2) 

(3.4.9) 

Obviously, if A T is small, the curve will spiral one or more rounds and go to the 

infinity on the second quadrant or the fourth quadrant. Otherwise, it goes to the in­

finity on the fourth quadrant. These two cases are shown in Fig. 3.4.5a and 3.4.5b, 

respectively. 

If 0<T2 <T1, we similarly fmd the tangent of the asymptotic line 

v (l-m2)sinm(T2 +nl2)+2S'mcosm(T2 +nI2) 
-~~--~--~~--~~~----~--~ 

u m[(l-m2)cosmT2 -2S'msinmT2] 

1 n 
---->0, 

m 2(T1-T2) 

(3.4.10) 

when m(TI-T2)~nI2. The transition set will approach to the infinity on the first 

quadrant or the third quadrant if A T is small. Otherwise, it goes to the infinity on 

the third quadrant. These two cases are shown in Fig. 3.4.5c and 3.4.5d, respec­

tively. 
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Noting the marginal stability conditions in Eq. (3.4.2) for a system without time 
delays in feedback, we can determine the stability regions shown as the shaded 
ones in Fig. 3.4.5. Fig. 3.4.5d shows that the stability region shrinks to a very 
small one if 0<T2 «T, . This is the most dangerous case that should be avoided in 

practice. 

a. b. v 

c 

u 

c. 

u 

Fig. 3.4.5. Transition sets and stability regions on the plane of (u,v) for unequal time de­

lays;a"'<'2,small ~"b. "<'2,large ~"c. ">'2' small ~"d. ">'2' large ~, 

3.5 Stability Switches of High Dimensional Systems 

As the delay-independent stable region of a practical system is often a very small 
part in the parameter space of the system, a question is aroused as following. What 
stability properties does a system have if the system parameters are chosen out of 

the delay-independent stable region in the parameter space? 
To answer this question, the characteristic roots of a delayed dynamic system 

are taken as the functions of time delay. If the system parameters do not fall into 

the delay-independent stable region, the real part of at least one characteristic root 

changes its sign when the time delay varies. That is, the stability of system can not 

keep unchanged with an increase of time delay. Such a change with increase of 

time delay has been referred to as the stability switch in (Kuang 1993) and (Mar­

shall et al. 1992). The concept of stability switch is not new, still, it is an open 

problem if some uncertain parameters of the system are involved in the design 

phase. 
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The objective of this section is to gain an insight into the system stability in the 

parameter space and to give a simple approach so as to complete the stability 

analysis as done by using the method of D-subdivision. 

3.5.1 Systems with a Single Time Delay 

We first analyze the stability of a delayed dynamic system of single degree of 

freedom to give a guide of the analysis of stability switches. 

Example 3.5.1 Consider the system with the characteristic equation 

(3.5.1) 

Suppose that A=im and m:2:0 is a root of D(A,T)=O for T>O. From 

D(im,T)=O, thus, we have l(imY+im+41=2. There follows 

(3.5.2) 

This equation has four roots ml,3 =±2 and m2,4 =±../3 . 

Substituting A=iml =2i into Eq. (3.5.1) gives cosmlT=O and sinmIT=l. Then, 

we have 

1t 
Tlk=lm+- and Tlk+l-Tlk=1t, k=O, 1,2, .... , 4 ' , (3.5.3) 

At m2 =../3 , we have 2cosm2 T=-l and 2sinm2 T=../3 , as well as 

It is obvious that D(A,O) is asymptotically stable. As the characteristic roots 

are continuous with respect to T, the system keeps stable until T arrives at 1t/4, 

the minimum of critical time delays which may destroy the stability of system, 

from the left side. To see whether the stability of system changes, we check the 

sign of d[Re(A)]/dT as T is crossing 1t/4. Straightforward computation shows 

that d[Re(A)]/dT>O when T=1t/4. Hence, the characteristic equation of system 

has a pair of conjugate complex roots with positive real part when T is a little bit 

larger than 1t/4 so that the system becomes unstable. The system keeps unstable 

until T reaches the next critical time delay 21t/(3../3) from the left side. At the 

second critical time delay, d[Re(A)]/dT<O holds. Thus, the characteristic equa­

tion decreases a pair of conjugate complex roots with positive real part and the 

system becomes stable again. As the time delay increases further, the characteris-
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tic equation increases a pair of characteristic roots with the positive real part when 

r is crossing rl,k' and decreases such a pair when r is crossing r2,k' With an in­
crease of time delay, therefore, the system changes the status from stability to in­
stability, and then from instability to stability, and so on. The stability exchange 

happens one by one provided that r\,k+1 -r2•k >0 holds. However, the relation 

rl,k+1 -rl,k =rc<2rc/.J3 =r2,k+1 -r 2,k indicates that the condition rl,k+1 -r 2,k >0 must 
be destroyed with an increase of k . Thus, the exchange of stability has to stop 
eventually and permanent instability occurs. 

This example shows that the analysis of stability switches of a delayed dynamic 

system includes two steps. That is, to find out the possible vibration frequencies 

and possible critical values of time delay first, then to check the sign of differen­

tiation of the characteristic roots with respect to the time delay at the critical val­

ues. The second step tells if the time delay stabilizes or destabilizes the system. 
Now we consider the stability switches of a high dimensional, linear dynamic 

system with a single time delay governed by the following characteristic equation 

D(A, r)=P(A)+Q(A)e-,lr =0, (3.5.5) 

where r~O is the time delay, peA) and Q(A) are two polynomials of real coeffi­
cients with deg(P)=n>deg(Q). Without loss of generality, we assume that both 
polynomials peA) and Q(A) have no common pure imaginary roots. 

To study the marginal stability when D(im,r)=O, let 

PR(m)=Re[P(im)], PI (m)=Im[P(im)] , 

QR(m)=Re[Q(im)], Q/(m)=Im[Q(im)] , (3.5.6) 

where PR(m) and QR(m) are even functions, whereas PI(m) and QI(m) are odd 
functions. Hence, the equivalent form of D(im,r)=O reads 

{
QR (m )cosmHQ I (mr)sinmr=-PR (m), 

QI (m )cosmr-Q R (m )sinmr = -PI (m). 
(3.5.7) 

In order that Eq. (3.5.5) has a pair of pure imaginary roots ±im for r~O, it is ne­

cessary that IP(im)I=IQ(im)l, that is, 

PR 2 (m)+ ~ 2 (m )-[QR 2 (m )+QI2 (m )]=0, (3.5.8) 

has a positive root m. As the case of r l =r2 in Section 3.3, the left side of above 
equation can simply be recast in an explicit form 

(3.5.9) 

Thus, we have the following theorem. 
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Theorem 3.5.1 In order that the quasi-polynomial D(A;r) has pure imaginary 

roots A=±im , it is necessary that m is a real positive root of F(m). 

Because P(im) and Q(im) do not share any real root, Q/(m)+Q/(m);tO 

must hold. Otherwise, Eq. (3.5.8) gives PR(m) =0, P/(m) =0, QR(m)=O and 

Q/ (m) =0. They are in contradiction with the assumption. Once a positive root m 

of F(m) is found, the critical time delays are given by 

() 21m 
'k=-+-' k= 1,2, ... 

m m 

where ()E[O, 21t) yields a set oftriangle equations 

{
sin() 

cos() = 

QR (m )p/ (m)- PR (m)Q/ (m) 

Q/(m)+Q/(m) 
PR (m)QR (m )+Q/ (m)P/ (m) 

QR 2 (m )+Q/ 2 (m) 

(3.5.10) 

(3.5.11) 

If F(m) has no positive roots, the system does not undergo any stability 

switch. That is, the system is delay-independent stable if it is asymptotically stable 

when the time delay disappears, or unstable for an arbitrary time delay if the sys­

tem free of time delay is unstable. 

If F(m) has any positive roots, the root A ofEq. (3.5.5) can be regarded as a 
function of, and is denoted by ,1,(,). Once a pair of pure imaginary characteris­

tic roots ±im is found and the corresponding critical values of time delay in Eq. 

(3.5.10) are determined, the variation direction of its real part with respect to the 

time delay , can be studied through S =sgn[ d(ReA)/ d ,I A~i"']. The following theo­

rem enables one to avoid complicated computation. 

F 

ImA 

ReA ReA 

Fig. 3.5.1. Explanation of Theorem 3.5.2 
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Theorem 3.5.2 S=sgnF'(m) . 

Proof Differentiating Eq. (3.5.5) with respect to r yields 

d..l AQ(..l) 

dr P'(..l)eJr +Q'(..l)-tQ(r) . 
(3.5.12) 

In order that this derivative is properly defined at ..l=±im, it should be required 

that P'(im)exp(imr)+Q'(im)-tQ(im):;toO, i.e., ±im are not a pair of repeated 

characteristic roots. Noting the following two relations 

we have 

1 a-ib . 
sgn[Re(-.-)]=sgn(-2--2 )=sgn[Re(a+lb)], a,bER, 

a+lb a +b 

d(Re..l)I d..l I d..l -11 S=sgn[ ]=sgn[Re(-) ]=sgn[Re(-) ] 
dr J=i", dr J=i", dr ,!=i", 

=sgn{Re[ P'(im) + Q'(im) .r]} 
imP(im) imQ(im) 1m 

=sgn{Im[Q'(im)Q(im) p'(im)p(im)]} 
mIQ(im)12 mIP(im)12 

=sgn{Im[Q'(im)Q(im)-P'(im)P(im)]} , 

where the bar denotes the operation of complex conjugate. Substituting 

Im[Q'(im)Q(im)-P'(im)P(im)] 

=PR(m)P~(m)+~(m)P:(m)-QR(m)Q~(m)-QI(m)Q;(m) , 

=!F'(m) 
2 

into Eq. (3.5.15) yields 

S=sgnF'(m) . 

This completes the proof. 

(3.5.13) 

(3.5.14) 

(3.5.15) 

(3.5.16) 

(3.5.17) 

Furthermore, two cases are discussed as following. The first case is that the 

polynomial F(m) has one positive simple root mo with the critical values 

rk>k=I,2,.·· of time delay given by Eq. (3.5.10). Because the leading coefficient 

of polynomial F(m) is positive, we have F(m»F(mo)=O for all m>mo and 

F(m)<F(mo)=O for mE[O, mo). There follows F'(mo»O. This fact indicates 
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that each crossing of the real part of characteristic roots at a critical value T k of 
time delay corresponding to ±icoo must be from the left to the right. Thus, the 
characteristic equation of system has a new pair of conjugate roots with positive 
real parts when the time delay is crossing a critical value Tk of time delay, and the 
number of characteristic roots with positive real part can not decrease as the time 
delay increases. Hence, if the system without time delay is asymptotically stable, 
the numbers of characteristic roots with positive real part are 0,2,4,,, ·,2i, .. · on 
the intervals [0, To), (To, TI), (TI, Tz), .. ·,(Tj _ l , T j ), .. ·, respectively. This means 
that the system is asymptotically stable for TE[O, To), and unstable for 
TE[To, +00). If the system free oftime delay is unstable, then there exists at least 
one pair of conjugate characteristic roots with positive real part for TE[O, To). 

Thus, the system is unstable for any given time delay. 
In the second case, the polynomial F(co) has a number of simple, positive 

roots denoted by COl >COZ >",>cop >0. The difference between two critical values 
oftime delay corresponding to a given pair of roots ±ico j satisfies 

2n 2n . 
Tjk+I-Tjk=-<--=Tj+lk+I-Tj+lk' k=1,2, .. ·, }=1,2, .. ·,p-1. (3.5.18) , 'coj coj+1 ' , 

The crossing of real parts of characteristic roots at two adjacent simple roots coj 

and coj+! must be in opposite directions, since F'(coj ) and F'(coj+d have oppo­
site signs. In fact, it is easy to see that both sgn[ F'( COZj_1 )]>0 and 
Sgn[F'(C02j)]<0 ,j'?l are true since F(co»F(col)=O holds for all COE(COI, +00) 

and all possible COE (COZk+I' coZk ), and F(co)<F(cod=O for all possible 
COE (COZk , COZk-I). That is, the crossing real parts of characteristic roots at T2j-I,k 

corresponding to ±icozj_1 must be from the left to the right, and the crossing at 

TZj,k corresponding to ±icozj must be from the right to the left. Therefore, as the 
time delay varies from zero to the positive infinity, the characteristic equation of 

system always adds a new pair of conjugate roots with positive real parts for each 

crossing at TZj-I,k' but reduces such a pair for each crossing at TZj,k' Given a long 
time delay f, Eq. (3.5.18) indicates that the interval [0, f) includes more TI,k 
corresponding to ±icol than T Z,I to ±icoz. Hence, more characteristic roots change 

their sign of real parts from the negative to the positive at TI,k than those changing 
the sign of real parts from the negative to the positive at T 2,I with an increase of 
time delay in the interval [0, f). A similar assertion holds also true for the time 

delay crossing at T3,m and T4,n corresponding to ±ico3 and ±ico4 , and so forth. 
Hence, the characteristic equation of system must have eventually some roots with 
positive real parts when the time delay is long enough. As a result, the system 
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must become unstable with an increase of time delay and the number of stability 

switches is finite. 
The above analysis can be summarised as following. 

Theorem 3.5.3 Assume that Eq. (3.5.5) has no pure imaginary characteristic 

roots iw such that Q(iw)=O . 
(a) If the polynomial F(w) has no positive root, the system is delay­

independent stable or unstable for any given time delay, depending on whether or 

not the system free of time delay is stable. 

(b) Suppose that F(w) has only one simple positive root w. If the system free 

of time delay is asymptotically stable, there exists exactly one critical time delay 

To >0 such that the system remains asymptotically stable when TE[O, To), and 

becomes unstable when T~To. If the system is unstable for T=O, it is unstable for 

an arbitrary time delay T • 

(c) If F(w) has at least two positive roots WI >w2 > .. ·>wp >0 and the roots are 

simple, a finite number of stability switches may occur as the time delay T in­

creases from zero to the positive infinity, and the system becomes unstable at last. 

If the order of a system is one or two, the analysis on the number of real roots 

of F(w) is relatively easy. If the system is of high order and includes some 

parameters to be designed, however, pure numerical consideration is time con­

suming. In this case, the generalized Sturm criterion serves as an effective tool for 

analysing the stability switches. 

Theorem 3.5.4 Assume that Eq. (3.5.5) has no pure imaginary characteristic 

roots satisfying Q(iw)=O and the roots of F(w) are simple. Let 1 and s be the 

number of non-zero terms and the number of variation of signs in the modified 

sign table of the discrimination sequence of F(w) , then following facts are true. 

(a) If 1-2s=0, the system is delay-independent stable or unstable for any time 

delay, depending on whether the system free of time delay is asymptotically stable 
or not. 

(b) If 1-2s =2 and the system free of time delay is asymptotically stable, there 

exists a critical time delay To> ° such that the system remains asymptotically sta­

ble when TE[O, To), and becomes unstable when T~T 0 • If /-2s =2 and the system 

is unstable for T=O, it keeps unstable for an arbitrary time delay T. 

(c) If /-2s > 2 , a [mite number of stability switches occurs as the time delay T 

increases and the system becomes unstable at last. 

Based on Theorem 3.5.1 and the generalized Sturm criterion, the stability ana­

lysis for a dynamic system with uncertain parameters and an uncertain time delay 

can be completed as follows. 



www.manaraa.com

98 3 Stability Analysis of Linear Delay Systems 

Algorithm 3.5.1 

(a) Find polynomial F(w) corresponding to the characteristic function. 

(b) Run the MAPLE routine discr to get the discrimination sequence of F(w) 

and the factors d j , i=O, 1, .... 

(c) Divide the parameter region of concern into some sub-regions by drawing 

the graphs of d j , i=O, 1, ... and the curves determined by the Routh-Hurwitz sta­

bility conditions of system when r = 0 . 

(d) Use Theorem 3.2.2 to check the number of real roots of F(w) in each sub­

region of the parameter region and use Theorem 3.5.1 to predict the stability 

switches. 

This algorithm will be demonstrated in Section 3.6 via analysing the stability 

switches of a quarter model of active suspension and a four-wheel-steering vehi­

cle, respectively. 

3.5.2 Systems with Commensurate Time Delays 

In this subsection, the problem of stability switches is studied for a more general 

linear dynamic system, which has multiple commensurate time delays. As we shall 

see, a similar result can be obtained as in the caSe of single time delay. 
Consider the characteristic quasi-polynomial of system in the form 

m 

P(A,Z)= Lqk(A)Zk , (3.5.19) 
k=O 

where z=e-AT and r>O. We define first 

(3.5.20a) 

It is easy to see that p(l) (A,Z) can be written as 

m-l 

P(l)(A,Z)= Lql1)(A)zk , (3.5.20b) 
k=O 

since it does not contain the term zm . Repeating the same procedure, We have 

m-j 

P(j)(A,Z)= Lqlj) (A)Zk , j=I,2,.··,m. (3.5.21) 
k=O 

Obviously, if (A,z)=(iw ,e-iWT ) is a root of P(A,Z)=O, so is it for P(-A,lIZ)=O 
since the coefficients in P(A,Z) are real. Moreover, (A,z)=(iw,e-iWT ) is a com-
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mon root of all p(J)()."z)=O and p(J)(-A,llz)=O, j=1,2,··,m. Notice that 

p(m)(A,z)=qbm)(A) is independent of z, it must be in the form of polynomial 

F(m 2 ) because qbm)(±A)=O at each root (A,z)=(im,e- iaJT ) of P(A,Z). 
Theorem 3.5.5 In order that P(A,Z) has a pair of pure imaginary roots 

A=±im, m must be a root of F(m 2 ). 

Remark 3.5.1 From the concept of resultant for two polynomials of a single 

variable, the polynomial F(m 2 ) is in fact the resultant of polynomial P(A,Z) and 

polynomial zm P( - A,ll z) with respect to z except for a non-zero constant. 

Once a positive root m of F(m 2 ) is found, it is possible solve P(im,z)=O for 

z under the condition of Izl=l and then determine the critical values of time de­

lay. For the analysis of stability switches, the variation direction of real part of 

characteristic roots should be determined as T is varied. That is, 

S =sgn( dReAI d T)I ,!=iOJ needs to be computed. 

For brevity, denote the quasi-polynomials by Q(A,T)=P(A,Z) and 

Q(J)(A,T)=P(J)(A,Z) for j=I,2,··,m. Assume that (A,T)=(imo,To) yields both 

Q(imo,To)=O and Q(l)(imo,To)=O. Let T be slightly perturbed to T=To+OT, OA 
and OA1 be the small perturbations of A from imo such that 

{
Q(imo +OA, To +OT) = 0, 

Q(I) (imo +OA1 , To +OT)=O. 
(3.5.22) 

We need to know when ReoA,. ReoA1 >0 and when ReoA,. ReoA1 <0 . Expanding 

the above two equations and neglecting the high order terms with respect to small 

perturbations OT, OA and OA, , we have 

{
Q'! (imo, To)oA+Q,.(imo' To)OT=O, 

Qi') (imo, To )OA, +Q;\) (imo, To )OT = 0, 
(3.5.23) 

where the subscripts A and T represent the corresponding partial derivatives of 

the functions. Straightforward computation gives 

Qi') (imo,To)=qo( -imo)Q,! (imo, TO)+qm (imo)z;Q,! (-imo,To) , 

(3.5.24) 

where z:;' =e-iOJo"o . Thus, 

qo( -imo)[Q,! (imo' To)O~ +Q,. (imo, To)OT] 

+ qm (imo)z;[Q,! (-imo, To)O~ -Q,. (-imo, To )OT] =0. (3.5.25) 
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Now, we eliminate Q,,(±iwo,ro) and Qr(±iwo,ro). To this end, imposing the 

complex conjugate on the first equation in Eq. (3.5.23) yields 

Q,,(-iwo,ro)oA +Qr(-iwo,ro)OT=O. 

This, together with Eq. (3.5.25), leads to 

qo (-iwo)Q" (iwo, ro)(oA1 -0,1,) 

+qm(iwO)z;Q" (-iwo,ro)(oA1 +0,1, )=0. 

Imposing the complex conjugate on the above equation, we have 

qo (iwo)Q;[ (-iwo' ro)(o~ -0,1,) 

+qm( -iwo)z~mQ" (iwo' ro)(oA1 +0,1,)=0. 

Eliminating Q,,(±iwo,ro) from Eqs. (3.5.27) and (3.5.28) gives 

qo(iwo)q" (-iwo)(o~ -oA)(o~ -0,1,) 

=qm(iwO)qm( -iwo)(o~ +oX)(o~ +0,1,). 

Let oA=x+iy and 0,1,1 =X1 +iY1 . Then, we can rewrite Eq. (3.5.29) as 

[qo(iwo )qo (-iwo)-q m (iwO)qm (-iwo)](x2 + x~ +(y-Y1 )2) 

=2xX1 [qO(iwO)qO( -iwO)+q m (iWO)q m (-iwo)]. 

Thereby, ReoA· Reo~ > 0 holds if and only if 

q61) (iwo)=qo (iwo )qo (-iwo )-q m (iwo)q m (-iwo» 0 . 

(3.5.26) 

(3.5.27) 

(3.5.28) 

(3.5.29) 

(3.5.30) 

(3.5.31 ) 

This implies that as the time delays increase, the direction of crossing by a root of 

Q(A,r), namely P(A,z) , is the same as that of the corresponding root of 

Q(l)(A,r) , namely p(1)(A,z), if and only if qa1)(iwo»0, and is opposite if and 

only if qa1) (iwo )<0. 

The same procedure can be repeatedly applied to 

{
Q(i)(iWO +oA;.ro +or)=O, 

Q(i+1) (iwo + Ai+pro +or)=O, i=1,2,.··,m-2. 
(3.5.32) 

Therefore, the direction of crossing by a root of Q(i)(A,r) , namely p(i)(A,z) , is 

the same as that of the corresponding root of Q(i+1) (A,r) , namely p(i+1) (A,z) , if 

and only if qai+1)(iwo»0, and is opposite if and only if qai+1)(iwo)<0, where 

(i+1)(. )_ (i)(. ) (i)(. ) (i) (. ) i (. ) qo lWo -qo lWo qo -IWo -qm-i lWo qm-i -IWO • (3.5.33) 
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In the final step, namely the simplification from Qlm-l)(A,r)=q&m-l)(A)+q}m-l)(A)Z 
to Qlm)(A)=q&m-l)(A)q~m-l)(_A)_qllm-l)(A)q}m-l)(_A), Theorem 3.5.2 can be used. 

Then, we have the following theorem. 

Theorem 3.5.6 Let II(A)=qo(A)q~I)(A}··q~m-l)(A), then 

d(Rd) I . dF(W2 )1 S =sgn[ _0 ] = Sgn[ll(lW ) ]. dr A-t<110 0 d(w 2 ) 
m=wo 

Example 3.5.2 Study the stability switch of 

P(A,z)=mA2+d+k-uz2-vk with z=e-Ar • 

We have 

The analysis on the stability switches includes five steps as following. 

(a) Computation of p(l)(A,z) : We have 

p(l)(A,z)=qo( -A)P(A,z)-q2(A)z2 P( -,1,,11 z) 

=m2A4 +(2mk-c2)A2 +k2 _u2 +[-mvA3 +cvA2 +(u-k)vA]z, 

and then 

q~l)(A)= -mvA3 +cvA2 +(u-k)vA . 

(b) Computation of p(2)(A,z) : We derive 

p(2) (A,z)=q~l) (-A )p(l) (A,z )_q~l) (A )zp(l) (-,1,,11 z) 
4 18 16 14 12 =m /l, +C1/l, +C2/l, +C3/l, +C4 , 

where 

C4 =(e _U 2 )2 • 

(c) Computation of the critical times: Solve 

(3.5.34) 

(3.5.35) 

(3.5.36) 

(3.5.37) 

(3.5.38) 

(3.5.39) 

(3.5.40) 

(3.5.41) 

(3.5.42) 



www.manaraa.com

102 3 Stability Analysis of Linear Delay Systems 

for positive roots first. Then, fmd out the complex values of z from P(iOJ,z)=O 

such that Izl=l and in turn fmd out the critical time delays. 
(d) At each pair of critical values of OJ and ", determine the sign of 

q~l) (iOJ )F'( OJ2) . If the sign is positive, then the system increases a pair of char­

acteristic roots with positive real part as the time delays cross the critical value. If 
the sign is negative, the system decreases such a pair of characteristic roots with 

positive real parts. 

(e) Determine the stability for the system free of time delays. This, together 
with the conclusions obtained in step (d), enables one to determine the number of 

interchange of stability. We must pay attention to the condition that guarantees the 

occurrence of interchanges. 

3.6 Stability Analysis of an Active Chassis 

In this section, the stability of equilibrium of two models of advanced ground ve­

hicles is analyzed to demonstrate how to investigate the stability switches of de­

layed dynamic systems with undetermined system parameters and time delays. 
One is the quarter car model of ground vehicle equipped with a sky-hook damper, 

and the other is a four-wheel-steering car with a time delay in driver's response 
taken into account. The stability of equilibrium of these two models has been re­
ported in a number of previous publications, but mainly limited to relatively sim­
ple cases. For example, the stability of equilibrium of an undamped quarter car 
model of vehicle with active suspension was analyzed for a given time delay in 

(Palkovics and Venhovens 1992) by using the method of D-subdivision. Numeri­
cal analysis was made in (Hu and Wu 2000) to investigate the stability and the 

Hopfbifurcation for the four-wheel-steering car with driver's delay taken into con­

sideration when the vehicle parameters were given. In what follows, attention will 

be paid to the stability switches of the equilibrium of those two models under dif­

ferent parameter combinations. 

3.6.1 A quarter Car Model of Suspension with a Delayed Sky-hook 
Damper 

This subsection deals with the stability switches of the equilibrium of a quarter car 

model equipped with an active suspension. As discussed in Subsection 1.1.1, the 

equation of motion of the linearized system at the equilibrium yields 
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{
mbx(t)+CS [x(t)- y(t)]+ks [x(t)- y(t)]+VX(t-T) =0, 

m,Y<t)-cs [x(t)- y(t)]-ks [x(t)- y(t)]+k, [y(t)-z(t)]-VX(t-T) =0, (3.6.1) 

where x presents the vertical displacement of the vehicle body mb , Y the vertical 

displacement of the unsprung mass m" z the road disturbance, Cs and ks the 

damping coefficient and the stitfuess coefficient of suspension, and k, the linear 

stiffness of tire, v the feedback gain of velocity, T the time delay in the feedback 

control of sky-hook damper. 

In the following study, the system parameters are taken from a real car model. 

They are mb=290 kg, m,=59 kg, ks =16,812 N/m, k, =190,000 N/m, cs=O ~ 980 

Ns/m, V= -2,000 ~ 2,000 Ns/m. 

To simplity the analysis, both the time t and the time delay T are substituted 

with the dimensionless ones 

With help of the following dimensionless parameters 

mb 
m=-=4.9153 , 

m, 

Equation (3.6.1) can be recast as 

k=5....= 11.301, 
ks 

v 
V= r:::::-;:- E[O, 0.9078], 

Vmbks 

{
x(t)+C[X(t)- y(t)]+[x(t)- y(t)]+VX(t-T) = 0, 

y(t)-mc[x(t)-y(t)]-m[x(t)- y(t)]+m ky(t)-mvx(t-T) =0, 

(3.6.2) 

(3.6.3) 

(3.6.4) 

where the dot represents the derivative with respect to the new time t, and the 

road disturbance z is neglected since it does not play any role in the stability of a 

linear system. 

The characteristic equation ofEq. (3.6.4) reads 

D(A,T)=.t +c(1+m)A3 +(1+m+mk)A2+mckA+mk+vA(A2+mk)e-.<r =0, (3.6.5) 

and gives 

D(A,0)=A4 +[c(1+m)+v]A3 +(I+m+mk)A2 +mk(c+v)A+mk=O. (3.6.6) 

The Routh-Hurwitz criterion indicates that the system free of time delay is as­

ymptotically stable if and only if 
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{
v+C(l+m»o, 

v(1+m)+c[(m+1)2 +m2 k ]>0, 

v 2 +c[m(1+k)+1]v+mkc2 >0. 

When 00, the polynomial F(w) defined by Eq. (3.3.5) reads 

where 

lb1 =c2-v2-2+2m(c2-k-l)+m2c2, 

b2 =1+m(2kv2 -2kc2 +4k+2)+m2 (k 2 -2kc2 +2k+1), 

b3 =-2mk+m2 k(kc 2 _kv2 -2k-2), 

b4 =m 2k 2 • 

(3.6.7) 

(3.6.8) 

(3.6.9) 

By using the MAPLE routine discr, we obtain the discrimination sequence 

(3.6.10) 

where 

(3.6.11 ) 

In what follows, the stability switches of this quarter car model of active suspen­

sion are discussed for different combinations of dimensionless damping ratio c 

and feedback gain v. 

(1) General results 

Consider the parameter region defined by 

il= {(v,c) Ilvl<0.9, 0<c<0.45}. (3.6.12) 
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When c varies from 0 to 0.45, the inequalities do >0, d] >0 and d 6 >0 always 

hold true. As shown in Fig. 3.6.1, the curves, symmetrical to the c-axis, are given 

by d 2 =0, d 3 =0, d 4 =0 and ds=O on the plane of (v,c). The dashed curve is 

given by d2 =0, the dotted curve by d3 =0, the lowest thick curve (broad V­

shaped curve) by d4 =0, while the curve determined by ds =0 consists of two 

parts, the narrow V -shaped and the broad V-shaped curves. As a result, the region 

.Q is divided into 10 sub-regions, which are numbered by I, II, ... , X, from the 

left to the right and from the top to the bottom, respectively. 

From Eq. (3.6.7) we know that the left part of the narrow V-shaped curve is al­

so the boundary of the region determined by the Routh-Hurwitz stability condi­

tions. That is, the system free of time delay is asymptotically stable when the 

parameters are chosen from the sub-regions II, III, V, VI, VIII, and X, and is un­

stable when the parameter combinations are taken from the sub-regions I, IV, VII 

and IX. 

0.45.----.-----T"""'"-_===. 

0.3 

C 

0.15 IV 

d3=O 

-1... 
-S,9 0.9 

v 

Fig. 3.6.1. Parameter division for the stability of a quarter car model of active suspension, 
where the four sub-regions in lower part are numbered as VII, VIII, IX and X 

As shown in Table 3.6.1, the number of variation of signs in the modified sign 

tables of the discrimination sequence is 4 when a pair of parameters (v, c ) falls 

into the narrow V-shaped region, namely, sub-regions II and V. In this case, the 

polynomial F«(j) has no real roots (0=8-2x4). On the boundary of sub-regions 

II and V, the sign table of the discrimination sequence is [1, 1, 1, 0, 0, 1, -1, 1] and 

the modified sign table is [1, 1, 1, -1, -1, 1, -1, 1], so the number of variation of 

signs is also 4. This means that the polynomial has no real roots. In other sub­

regions, the number of variation of signs is 2 and the polynomial F«(j) has ex­

actly 2 (=(8-2x2)/2) distinct positive roots. Thus, the system is delay-
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independent stable in the narrow V-shape region, namely, sub-regions II and V, 

and it may exhibit a finite number of stability switches in other sub-regions. 

Table 3.6.1. Sign tables of the discrimination sequence in the stability analysis of a quarter 
car model of active suspension 

Sub-region do d1 d2 d3 d4 ds d6 Dl D2 D3 D4 Ds D6 D7 Dg /-2s 

I, III +++---+ 1 -1 1 1 4 

II +++--++ 1 -1 1 -1 0 

IV, VI ++----+ 1 -1 1 1 4 

V ++---++ 1 -1 1 -1 0 

VII, VIII ++-+-++ 1 -1 -1 -1 4 

IX,X ++-++++ 1 -1 -1 1 4 

We can find that only when a pair of parameters (v, c) falls to the boundary of 

two V-shaped regions, can the polynomial F(m) have repeated real roots. On the 

other common boundaries outside the narrow V -shaped region, the polynomial 

F(m) has 2 distinct simple positive roots. For example, on the common boundary, 

determined by d2 =0 , of sub-regions III and IV the modified sign table of the dis­
crimination sequence is [1, 1, 1, -1, -1, 1, 1, 1] since the sign table of the discrimi­

nation sequence is [1, 1, 1,0,0,1, 1, 1]. Thus, the number of variation of signs in 

the modified sigh table is 2 and F(m) has 2 distinct simple positive roots. On the 

curve determined by d3 =0, the modified sign table of the discrimination sequence 

is [1, 1, 1, -1, 1, 1, 1, 1], for the sign table of the discrimination sequence is [1, 1, 

1, -1, 0, 0, 1, 1]. So, the number of variation of signs in the modified sigh table is 2 

and F(m) has also 2 distinct simple positive roots. Thus, the system possesses a 

finite number of stability switches when the parameters are chosen from the com­

mon boundaries except for the two V -shaped curves. 

Though all the sub-regions, except for those numbered as II and V, make the 

polynomial F(m) have 2 distinct positive roots, the dynamic behaviors of the 

system do have differences in these sub-regions. Let the time delay increase from 

zero to the positive infinity. When the parameters are chosen from sub-regions I, 

IV, VII and IX, the system undergoes a fmite number of stability exchanges from 

instability to stability, then to instability and so on, and eventually becomes unsta­

ble. However, if the parameters are taken from sub-regions III, VI, VIII and X, the 

system first remains stable, then becomes unstable, and then turns to be stable, and 
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so on, and becomes unstable at last. This fact will be demonstrated through a few 

case studies as follows. 

(2) Case studies 

Case 1 v = 0.6 and c= 0.4. This parametric combination falls into the sub-region 

III in Fig. 3.6.1. In this case, the system free of time delay is asymptotically stable. 

It is easy to know that the polynomial F(w) has 2 distinct real roots w, = 1.2077 

and w2=0.7681, satisfying F'(w,»O and F'(w2)<0, respectively. The corre­

sponding critical values of time delay are 

".0=1.8112, ".,=7.0136, '1,2=12.2161, ".3=17.4185, ... (3.6.13a) 

'2,0 = 5.2456, '2,' = 13.4262, '2,2 = 21.6068, '2,3 = 29.7874,... (3.6.13b) 

They can be ranked as 

(3.6.l4) 

This sequence of critical time delays shows that the system is asymptotically sta­

ble for ,E[O, ".0), unstable for 'E[ ".0' '2,0], asymptotically stable again for 

,E(, 2,0' ",,), and eventually unstable for '~'l,l' 
The conclusions for the stability in the first three intervals lie in the facts that 

F'(w,»O and F'(w2)<0 hold, and that the system is asymptotically stable for 

,=0. To show the conclusion for ,~"," we observe that in Eq. (3.6.l4) ",' is 

followed immediately by ".2' but any '2.k cannot be followed by '2,k+' since 

",k+'-",k =21[/w+ <21[/w_ ='2,k+'-'2,k and ",0<'2,0' Hence, the system has at 
least one pair of characteristic roots with positive real part if '>",' . This implies 

that the equilibrium of system is unstable as long as ,>"" holds. 

Now, the case when '>",2 should draw special attention. In this case, we can 
not simply follow the conditions F'(w+»O and F'(w_)<O to conclude that the 

system is asymptotically stable for ,E(, 2." ",3), ('2,2, ",4) , and so on. This fact 

can be verified when ,= 15 E(, 2," ",3) is taken as an example. Let 

M(w)=Re[i-4D(iw,,)] and N(w)=Im[i-4D(iw,,)]. Then, M(w) has four posi­

tive roots p,=7.7727, P2=1.0301, P3=0.7872 and P4=0.7235, which yield 

N(p,)= 11.7883, N(P2)= 35.l676, N(p3)=-12.2723 and N(P4)=- 917.0734. 
Thus, we have 

4 

L( _l)k-' sgn[N(Pk )]=1-1-1+1=0. (3.6.l5) 
k~' 
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Because n=4 and N(O)=O, Eq. (3.6.15) contradicts the stability condition given 

by Theorem 2.2.7 as following 

~+!(_1)4 N(O)+ ~)-I)k-]sgn[N(Pk)]=O' 
2 2 k=] 

(3.6.16) 

This result can also be verified by using the Nyquist diagram. The system, there­

fore, is unstable for l'E(l'2,], l'].3) , (l'2,2' l'],4) , ••• , and then unstable for all 
l'~l'],] , As a result, the number of stability switches is 3. 

Case 2 v= 0.3 and c= 0.1, In this case, the polynomial F(OJ) has 2 distinct re­

al roots OJ] = 1.0979 and OJ2 = 0.8361 so that F'( OJ] »0 and F'( OJ2 )<0 hold, re­

spectively. The corresponding critical values of time delay are 

l'],O = 1.7053, l'],] = 7.4280, l'],2 = 13.1506, l'],3 = 18.8733, ... (3.6.17a) 

l'z,o = 5.2560, l'z,] = 12.7708, l'2,Z = 20.2856, l'2,3 = 27.8004,... (3.6.17b) 

which are ranked as 

(3.6.18) 

It can be similarly found that the system is asymptotically stable for l'E[O, l'],o) , 

(l'z,o, l'],]) and (l'2,], l'],z) , and unstable for l'E[l'],O, l'z,o], [l'],], l'z,d and 
[l'],Z, +00) . Hence, the system exhibits 5 stability switches. 

Case 3 v=- 0.5 and c= 0.2. This parameter combination gives 2 distinct real 

roots OJ] = 1.1961 and OJ2 = 0.7690 of polynomial F(OJ) , satisfying F'(OJ] »0 and 

F'( OJz )<0, as well as the critical values of time delay 

l'],o=4.2369, l'],] = 9.4898, l'],z=14.7427, l'],3=19.9956, ... (3.6.19a) 

l'z,o = 1.5375, l'z,] = 9.7085, l'z,z = 17.8796, l'Z,3 = 26.0506, ... (3.6.19b) 

They are ranked as 

(3.6.20) 

Now, the system free of time delays is unstable, but becomes stable for 

l'E(l'z,o, l'],o) , and then goes to unstable again for l'E(l'],O' +00). Hence, the sys­

tem undergoes the stability switch twice. 

Case 4 v = 0.05 and c= 0.01. This is a case when the stability of the system 

changes many times with an increase of the time delay. In fact, this parameter 

combination gives 2 distinct real roots OJ] = 0.9806 and OJz = 0.9356 of polynomial 

F(OJ) , satisfying F'(OJd>O and F'(OJz)<O. The critical values of time delay cor-
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responding to WI = 0.9806 are 1.7892, 8.1965, 14.6039, 21.0113, 27.4186, 

33.8260, 40.2333, 46.6407, 53.0481, 59.4554, 65.8628, 72.2701, 78.67750, ... , 

while those corresponding to W2 = 0.9356 are 4.8387, 11.5545, 18.2703, 24.9860, 

31.7018, 38.4175, 45.1333, 51.8490, 58.5648, 65.2806, 71.9963, 78.7121, 

85.4278, and so forth. In accordance with the notations used above, we have 

'2.10 < '1.11 <'1.12 <'2.11 . As a result, the system undergoes 23 stability switches as 
the time delay increases! 

These numerical examples illustrate that, in the sense of stability switches, the 

stability behavior of the quarter car model of active suspension with a delayed 
sky-hook damper is very complicated. The system may change its stability many, 

but finite, times as the time delay increases. If all the critical values of time delay 

are increasingly ranked, then the change of stability must terminate as soon as any 

'I.k is followed by 'l.k+1 in the sequence of critical time delays, and the system is 
unstable as long as '>'I.k. The increase in time delay usually results in instability 
of the system, but it also offers the probability of stabilizing an unstable system 

free of time delay as demonstrated in Case 3. 

3.6.2 Four-wheel-steering Vehicle with a Time Delay in Drive's 
Response 

Now consider the model established in Subsection 1.1.2 for four-wheel-steering 
vehicles. Let V be the lateral velocity, r the yaw angular velocity, y the vertical 

coordinate in a fixed frame, If/ the heading angle of the vehicle, 5f and 5r the 
steering angles applied on the front and rear wheels respectively. When the time 

delay in driver's response is taken into account, the motion of system is described 
by a set of five-dimensional differential equations with a time delay as following 

m V(t)=-mUr(t)+2Ff cos5 f (t)+2Fr cos5r (t), 

1z r(t)=2aFI cos5 f (t)-2bFr cos5r (t), 

y(t)=V (t)COSIf/(t)+U sinlf/(t), (3.6.21 ) 

v(t)=r(t), 

. 1 K L 
5 f (t)=-5 f(t)-_m [y(t-,)+-V(t-,)cOSIf/(t-,)+Lsinlf/(t-,)]+ J(t), 

's 's U 
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where U is the constant moving speed of the vehicle, I z the inertia moment of 
rotation of the vehicle body with respect to the vertical axis, a and b the distances 
from the center of mass to the front and rear axles respectively, Fj and Fr the 
lateral forces generated by the contact between the tire and the road surface at 

each of front wheel and rear wheel respectively, L the preview distance of the 
driver, • the time delay in driver's response, and !(t) the external disturbance. 

As discussed in Subsection 1.1.2, the tyre forces are described by means of the 
truncated Magic formula 

{ 
V+ar V+ar 3 

Fj=-C] [arctan(--)-oj ]+C3[arctan(--)-oj] , 
U U 

V-br V-br 
Fr =-D] [arctan(--)-or]+ DJ arctan(--)-or f , 

U U 

(3.6.22) 

where C], C3, D] and D3 are positive parameters. In addition, the bilinear con­
trol strategy between the front and rear steering angles is implemented 

where 

C] 
k =--;tl 

o D ' 
] 

(3.6.23) 

k 2(aC]-bD])+mU2 

r 2Dp 
(3.6.24) 

The vehicle is said to be under-steered or over-steered if aC] -bD] is negative or 
positive, respectively. In what follows, the system parameters are taken as m = 

1,300 kg, I z =3,000 kgm 2 , a = 1.0 m, b = 1.6 m, C] = 44,400 N/rad, D] = 43,600 
N/rad for under-steered case or 25,600 N/rd for over-steered case, C3 = 44,400 

N/rad3, D3 = 44,400 N/rad3, 's = O.2s and Km = 0.02. 
As studied in (Hu and Wu 2000), this four-wheel-steering vehicle has 9 steady 

state motions, including a trivial one. After some necessary manipulations, we can 

get the characteristic function of the linearized equations corresponding to the 

trivial solution as follows 

D(A,.)=A5 +a4A4 +a3A3 +a2A2 +a]A+ao 

=A5 +C04 A4 +C03 A3 +C02 A2 +(CI3 A3 +C]2 A2 +c]]A+c]o)e-AT , 

(3.6.25) 

where 

a; =co; +clie-A,T , i = 0, 1,2,3,4, 

Coo =0, CO] =0, 
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2 2 2 2 C03 = 2 [IzU(Cj +Dj)+m.sU (bDj-aCj)+mU(a Cj +b D j ) 

m·.!zU 

+bkr DjmU2 +2'sCpj (a+b)2 +2'Skr CjDp(a+b)], 

(3.6.26) 

According to the Routh-Hurwitz criterion, the trivial solution for .=0 is asymp­

totically stable if and only if 

It is easy to derive the polynomial F(OJ) defined by Eq. (3.3.5) 

F(OJ) = OJ 10 +(c~ - 2coJ0J8 + (cg3 -Ct3 -2c04c02 )OJ6 + 

(cg2 -Ct2 + 2C13Cl1 )OJ4 +(2c12clO -ctj)OJ2 -cj
20 • 

(3.6.27) 

(3.6.28) 

It has at least one positive root since F(O)=-cto<O and F(+oo)~+oo. Thus, the 

system can not be delay-independent stable. Using the MAPLE routine discr gives 

the discrimination sequence of F(OJ) as following 

(3.6.29) 

As the expressions of d6 and d7 are lengthy, the terms of the discrimination se­

quence are not presented here. In what follows, attention will be paid to the fol­

lowing parameter combinations 

L1={(L,U)15rn1s<U <40rnls,IOm<L<120m}. (3.6.30) 
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When the vehicle is under-steered, it is easy to know that the Routh-Hurwitz 

stability conditions are true in the whole region L1 given by Eq. (3.6.30). That is, 

the vehicle is asymptotically stable for ,=0. When ,>0, we can readily find that 

do <0, d 1 >0, d 3 >0, d s >0, d 6 <0, d7 >0 and ds >0. By plotting the graphs of 
d2 =0 and d4 =0, we divide the region L1 on the plane of (L,U) into 5 sub­
regions as shown in Fig. 3.6.2a, where d4 =0 determines the curves e1 and e2 , 

and d2 =0 gives e3 • Table 3.6.2 lists the sign tables of the discrimination se­

quence and indicates that the numbers of variation of signs in all sign tables are 
equal to 4. Thus, for each parameter combination in the given region, F(OJ) has 
exactly 1 (=(10-2x4)/2) simple positive root. Once this positive root is found, it 

is easy to obtain the minimal time delay '0 satistying Eqs. (3.5.6) and (3.5.7). As 

a result, the system remains asymptotically stable when 0:::;'<'0, and becomes 
unstable when ,'2:.'0. 

40 40 

~ . 
I RH h _ 

e, 35 C, III ~ 

t IV 

II 
U U 

C3 C 3 C4 VI 

-+- C z 
15 

III 
Cs V 

10 C6 
V 

20 40 60 80 100 120 20 40 60 80 100 120 
L 

Fig. 3.6.2. Parameter divisions on the plane of (L, U) for stability analysis of a four-wheel­
steering vehicle; a. the under-steered case, b. the over-steered case 

Table 3.6.2. Sign tables of the discrimination sequence in the stability analysis of a four­
wheel-steering vehicle in under-steered case 

Sub-region 

I, III, V 

II 

VII 

-+++-+-++ 

-++++++-+ 

-+-+++-++ 

1 -1 -1 1 1 -1 -1 -1 -1 1 

1 -1 -1 1 1 I 1 -I -1 1 

1 -1 -I -1 -1 1 I -1 -I 1 

[-2s 

2 

2 

2 
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Table 3.6.3. Sign tables of the discrimination sequence in the stability analysis of a four­
wheel-steering vehicle in over-steered case 

Sub-region do d[ ... d 7 dg D[ D2 ... D9 D lO 1-2s 

I, II, VIII -+++-+-++ I -1 -1 1 I -I -I -I -I 1 2 

III, VII -+++-+-++ 1 -1 -1 I 1 I I -I -1 1 2 

VI -++++++-+ I -1 -1 1 1 I I I -I 1 2 

V -+++-++-+ 1 -1 -1 1 1 1 -1 -1 -1 1 2 

VI -+-++-+-+ 1 -1 -1 -1 -1 1 -1 -1 -1 1 2 

When the vehicle is over-steered, the region LI is divided into 8 sub-regions, 

which are numbered by I, II, ... , VIII, from the top to the bottom, respectively as 

shown in Fig. 3.6.2b. The curve RHb here denotes the boundary determined by the 

Routh-Hurwitz stability conditions for the system without time delay. The graph 

of d4 =0 here consists of two curves c[ and C6 • The graph of ds =0 is composed 

of two curves C3 and cs . The graph of d6 =0 is the same as that of d7 =0 , and is 

composed of two curves C2 and cs . The curve C4 is the graph of d2 =0. The sub­

region I is the region where the system is unstable when T=O, and the other sub­

regions are those that ensure the asymptotic stability of system without time delay. 

Table 3.6.3 shows the sign tables of the discrimination sequence, and indicates 

that the polynomial F(OJ) has only 1 (=(10-2x4)/2) simple positive root in all 

sub-regions, except for the parameter combinations on the two common boundari­

es between sub-regions III and IV, as well as V and VII, where F(OJ) has repeat­
ed roots. In sub-region I, therefore, the system is unstable for any time delay. In 

the other sub-regions, for almost all the parameter combinations, there exists a To 
depending on the parameters so that the system is asymptotically stable for 

TE[O, To] and unstable for all TE(To, +00). 

Here are two case studies: (a) U=30mls and L=40m, (b) U=30mls and 

L=60m, corresponding to the under-steered and over-steered cases, respectively. 

In the under-steered case, the critical time delays are To =0.2899 and 0.2108, and 

the corresponding frequencies are OJ =2.4586 and 3.3027, respectively. In the 

over-steered case, the critical time delays are To=0.1943 and 0.1412, while the 

corresponding frequencies are OJ =2.6654 and 3.4454, respectively. 

In summary, for the four-wheel-steering vehicle with a time delay in driver's re­

sponse taken into account, the stability behavior of the system is relatively simple. 

As the time delay increases from zero to the positive infinity, there are only two 

possible cases. If the system free of time delay is unstable, it is unstable for any 
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time delay. Or, there exists a critical time delay To>O such that the system re­
mains asymptotically stable when TE[O, To) and becomes unstable as long as 
T2To if the system free of time delay is asymptotically stable. As shown by the 
numerical examples, the critical time delays are usually very short. Thus, the delay 
response of a driver may induce undesirable instability of a four-wheel-steering 
vehicle. 
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Difference always exists between a real dynamic system and its mathematical 

model because of the simplification in modeling, the measurement errors of sys­

tem parameters, and so on. It is very natural, hence, to study the dynamic systems 

governed by differential equations involving a number of uncertain parameters. In 

practice, a dynamic system should be robust stable. The problem of robust stabil­

ity of linear dynamic systems can be roughly stated as follows. Given a family n 
of linear dynamic systems and a set D on the complex plane, how to construct a 

computationally tractable technique to determine whether the characteristic roots 

of every system in n fall into D. This problem is usually referred to as the D­
stability of n . For the stability analysis of a continuous-time dynamic system, D 
should be the open left half-plane of the complex plane, whereas D should be an 

open unite circular disk on the complex plane for the stability analysis of a dis­

crete-time dynamic system. As a special, but very important case of D-stability, a 

system is said to be interval stable if it is asymptotically stable under all parameter 

combinations when some uncertain parameters vary on their pre-specified inter­

vals respectively. 
The robust stability oflinear dynamic systems has been intensively studied over 

the past decade. As well known, the robust stability of a linear dynamic system 

can be also determined by checking the location of its characteristic roots. For the 
dynamic system described by a set of linear ordinary differential equations, an im­

portant discovery on the interval stability was made in (Kharitonov 1979). It was 

proved that the interval stability of a family of characteristic polynomials, whose 

coefficients vary independently in corresponding intervals, is governed by the sta­

bility of four special characteristic polynomials. Afterwards, the so-called Edge 

theorem was established in (Bartlett et al. 1988) for the D -stability of a polytope 

n generated by the convex hull of a finite number of polynomials. The edge 

theorem states that given a simply connected set D on the complex plane, a 

polytope n of real polynomials, namely the convex hull of a finite number of re­

al polynomials, is D -stable if and only if the set of exposed edges of n is D­

stable. The methods for robust stability analysis of polynomials under parametric 
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uncertainties have been comprehensively described in (Bhattacharyya et al. 1995). 

However, no finite testing set, like that in the Kharitonov theorem in (Huang 
1992), exists for the D -stability in general. 

As for delay differential systems, the edge theorem was extended to the D­

stability of a polytopic family of quasi-polynomials in (Fu et al. 1989), where an 

effective graphical method, based on the Nyquist diagram of frequency response, 

was also presented for the D -stability. A similar problem was studied in (Barmish 

and Shi 1989) by means of a different frequency domain technique. The interval 
stability for differential equations with a single uncertain time delay was dealt 

with in (Tsypkin and Fu 1993) by using the Nyquist diagram of frequency re­
sponse. A numerical algorithm was suggested in (Kogan and Leizarowitz 1995) to 

testify the interval stability of delayed dynamic systems through the use of the 
zero-exclusion criterion. In (Kharitonov and Zhabko 1994), the problem of se­

lecting the test sets for the robust stability was discussed for some special families 
of quasi-polynomials. 

In this chapter, some stability criteria are first presented for the one-parameter 

family of quasi-polynomials generated by the convex hull of two quasi­

polynomials. Then the edge theorem for polytopic family of quasi-polynomials is 
introduced and some stability criteria are given. Afterwards, the robust stability is 

analyzed for a linear system with uncertain commensurate time delays, but the co­
efficients of corresponding characteristic quasi-polynomial depend linearly on 
some other uncertain parameters. As pointed out in (Blonde I and Tsitsiklis 2000), 
this problem of robust stability is an NP-hard problem due to the uncertainty of 
time delays. The term "NP-hard" is usually interpreted as an indication of inherent 
intractability. With help of Dixon's resultant elimination, the sufficient and neces­
sary conditions are derived for the robust stability of this type of delayed dynamic 

systems, and then a graphic test for the robust stability is presented. 

4.1 Robust Stability of a One-parameter Family of Quasi­
polynomials 

This section deals with the robust stability of a one-parameter family of quasi­

polynomials generated by the convex combination of two quasi-polynomials 

Pl(A) and pz(A) of the same order n defined as 

Q=conv{Pl (A),pz (A)}={PIZ (A,Jl)=(i- Jl)Pl (A)+ Jl pz (A)I JlE[O, I]) .(4.1.1) 
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It is essential to test the robust stability of this one-parameter family in applying 

the edge theorem to be discussed in the next section. For simplicity, the family n 
is said to be Hurwitz stable if every element of n is Hurwitz stable, namely, the 

roots of every quasi-polynomial in n have negative real parts. Obviously, n is 

Hurwitz stable if and only if the value set {P12 (2,,u) I Pl2 En, Re2~O, ,u E[O, I]) 

does not contain zero. That is the zero-exclusion criterion. 

4.1.1 Non-convexity of the Set of Hurwitz Stable Quasi-polynomials 

In general, the stability of both PI (2) and P2 (2) can not guarantee the stability 

of the whole family n. This fact will be demonstrated through the following two 

examples. 

Example 4.1.1 According to the Routh-Hurwitz criterion, it is easy to know 

that the polynomial 

(4.1.2) 

with a positive leading coefficient aD is Hurwitz stable if and only if 

(4.1.3) 

Thus, the following two polynomials are Hurwitz stable 

PI (2)=0.523 + 22 + 2+ 1.7, P2 (2)=1. 723 + 22 + 2+0.5, (4.1.4) 

because ala2 -aOa3 =0.5>0 holds for both polynomials. However, the following 
linear combination of these two polynomials 

(4.1.5) 

is not Hurwitz stable since a l a2 -aoa3 =-0.21 <0 holds. 

Example 4.1.2 We first consider a quasi-polynomial 

(4.1.6) 

Using Theorem 2.2.7, we have M(w)=w-sinw, and N(w)=-cosw. The unique 

root of M(w) is w=O, so m=O. Hence, all the conditions in Theorem 2.2.7 hold, 

i.e., q(O);tO, 1/2+1I2sgnN(0)=0 . We can also confirm the Hurwitz stability of 

Eq. (4.1.6) from Fig. 4.1.1, where the Nyquist diagram of q(iw)/(iw+l) does not 

encircle the origin of the complex plane. 
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Fig. 4.1.1. The Nyquist diagram of q(iw )/(iw+ 1) 

Now, we check the Hurwitz stability of the following quasi-polynomial 

(4.1.7) 

It is easy to see that p(A,O) is Hurwitz stable. Furthermore, we can show that the 

stability of p(A,k) changes as k increases from zero. Separating the real and 

imaginary parts of the marginal stability condition p(iw,k)=O gives two sets of 

equations 

or 

{
COS 2W+k=0, 

sinw-w=O, 

{
W2 ±2w+ l-k=O, 

cosw=O, sinw=+l. 

( 4.1.8a) 

(4.1.8b) 

Obviously, Eq. (4.1.8a) is not true for any k>O. Solving Eq. (4.1.8b) for wand 

k yields 

w=wn=%+n1t, k=kn=[%+n1t-(-ly]2, n=O, 1,2, ... (4.1.9) 

Direct computation shows that 

(4.1.10) 

Thus, with an increase of k, the crossing of a characteristic root at k 2!, 1=0, 1, 

2, .... must be from the left to the right. That is, p(A,k) always increases a new 

pair of conjugate characteristic roots with positive real part for each crossing at 
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values of k2/ • On the contrary, the crossing of a characteristic root at k2/+1 , I = 0, 
1, 2, ... must be from the right to the left with an increase of k and p(A,k) de­
creases such a pair of characteristic roots for each crossing at values of k2/+1 . As a 
result, p(A,k) changes its stability as k is crossing kn • That is, it is Hurwitz sta-

ble for kE[O, ko), (kl , k2), ... , (k2/+1, k2/+2), ... , but unstable for kE (ko, k l ), 

(k2, k3)' ... , (k2/ , k2/+d, .... Choosing 20E (ko,kd and 40E (k l ,k2), we know 
that p(A,20) is unstable and p(A,40) is stable. The Nyquist diagrams in Figs. 

4.1.2 and 4.1.3 show alternatively the instability of p(A,20) and the stability of 

p(A,40) . 

Let PI(A)=p(A,O) and P2(A)=p(A,40), then the Hurwitz stability of PI(A) 

and P2 (A) can not guarantee the robust Hurwitz stability of the whole family 

Q={PI2(A,,U)=(I-'u)PI(A)+'uP2(A) I ,UE[O, I]} since PI2(A,1I2)=p(A,20)EQ IS 

not Hurwitz stable. 
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4.1.2 Sufficient and Necessary Conditions for Interval Stability 

The fact that each root A.,(u) of p(A.,Ji) depends continuously on parameter Ji 

leads to the following theorem. 

Theorem 4.1.1 The family n is Hurwitz stable if and only if 

(a) PI (A) or P2 (A.) is Hurwitz stable, 

(b) PI2(iw,Ji)*0 holds for all wER and all JiE[O, 1]. 

Proof The necessity is obvious, so only the sufficiency is to be proved. Because 

p( A,Ji) is analytic with respect to A and Ji, the sum of the multiplicity of roots 

of p(A.,Ji) =0 on the open right half-plane can change only if a root appears on or 

crosses the imaginary axis as Ji varies. Noting that PI (A) or P2 (A) is Hurwitz 

stable and PI2(iw,Ji)*0 holds true for all WER and all JiE[O, 1], we make sure 

that the sum of the multiplicity of roots of P12 (A,Ji) =0 on the open right half­

plane remains unchanged and equals to zero as Ji varies. That is, p(A,Ji) is 

Hurwitz stable for all JiE[O, 1]. This completes the proof. 

Remark 4.1.1 The inequality P12(iW,Ji)*O holds true for sufficiently large 

w>wo. Thus, it is required checking the inequality only on a finite domain 

[0, Wo ]x[O, 1]. 

Next, let 

Rj(w)=Re[Pj(iw)], Sj(w)=Im[p/iw)], j=1,2. 

Ifthere is any pair (W,Ji)E[O, wo]x[O, 1] such that P12(iw,Ji)=O, then 

{o-Ji)RI (w)+ JiR2 (w) = 0, 

0-Ji)SI (W)+,uS2 (w)=O. 

The fact that 1-Ji and Ji does not vanish at the same time results in 

(4.1.11) 

(4.1.12) 

(4.1.13) 

If Eq. (4.1.13) has no root for (W,Ji)E (W,Ji)E[O, wo]x[O, 1], then P12(iw,Ji)*O 

holds true on this region. 

Theorem 4.1.2 The polytope n defined in Eq. (4.1.1) is Hurwitz stable if and 

only if the following two conditions hold. 

(a) The quasi-polynomial PI (A) is Hurwitz stable. 

(b) For any root woER ofEq. (4.1.13), if RI (wo)R2 (wo)*0,then 

RI (wo)R2 (wO»0. (4.1.14a) 
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IfEq. (4.1.13) has a non-negative root wo;?:O such that R1 (wo)=O or R2(wO)=0, 
then Eq. (4.1.14a) should be replaced by the following 

(4.1.14b) 

Proof We first look at the necessity. Condition (a) is obviously necessary. To 

prove the necessity of condition (b), we first consider the case R\ (wo )R2 (wo };to . 

Assume on the contrary that the following inequality holds 

(4.1.15) 

(4.1.16) 

namely, 

(4.1.17) 

Denote the value of the expression in Eq. (4.1.17) by 1-,uo, where ,uo E(O, 1) . 
Then, we have 

(4.1.18) 

According to Eq. (4.1.13), it is also true that 

(1-,uo )S\ (wo)+ ,uOS2 (wo )=0. (4.1.19) 

Combining Eq. (4.1.18) with Eq. (4.1.19) gives 

(1-,uo )p\ (iwo)+ ,uOP2 (iwo )=0. (4.1.20) 

When R\ (wo )=0 or R2 (wo )=0, the same procedure for the case 

R1 (wo )R2 (wo )*0 can also be applied to show that there exists a ,uo E [0, 1] such 
that Eq. (4.1.19) holds, and in tum Eq. (4.1.20) holds true if we assume on the 

contrary that SI(WO)S2(WO)~0 holds. Eq. (4.1.20) means that at least one of the 

quasi-polynomials in the polytope Q has a root on the imaginary axis. This as­

sertion contradicts the Hurwitz stability of polytope Q. Therefore, condition (b) 

IS necessary. 

To prove the sufficiency, assume that PI (A) is Hurwitz stable and condition 

(b) holds. Note that Eq. (4.1.14) is equivalent to 

(4.1.21) 
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This indicates that for each ,u E [0, 1], any solution Wo of Eq. (4.1.13) does not 

satisfy Eq. (4.1.18) or correspondingly Eq. (4.1.19). Hence, we have 

(1-,u)PI(iwo)+,uP2 (iwo);tO, namely, Eq. (4.1.20) holds for all ,uE[O, 1]. Thus, 

the roots of (1-,u)PI (,1,)+ ,uP2(,1,) do not cross the imaginary axis as ,u varies. As 

all the roots of PI (A) stay on the open left half-plane of the complex plane, so do 

the roots of all (1- ,u)PI (,1,)+ ,uP2 (A) for all ,u E[O, 1]. This fact implies that all 

the quasi-polynomials in the convex combination generated by PI (A) and P2 (A) 

are Hurwitz stable. This completes the proof of Theorem 4.1.2. 

Because Eq. (4.1.13) is independent of ,u, all the roots ofEq. (4.1.13) can al­

ways be figured out numerically. Then, the stability analysis can be easily com­

pleted. 

The robust Hurwitz stability of 12 can also be analyzed by using the functions 

of phase angle defined as following 

j=I,2. 

Theorem 4.1.3 The family 12 is robust Hurwitz stable if and only if 

( a) PI (A) and P2 (A) are Hurwitz stable, 

(b) qJI (W)-IP2 (w);t±1t for any WE[O, +<Xl). 

(4.1.22) 

Proof To prove the necessity, assume that 12 is robust Hurwitz stable, but, on 

the contrary, there exists an Wo ER such that 

(4.1.23) 

If RI (wo)=O or R2 (wo )=0, Eq. (4.1.23) obviously results in SI (WO)S2 (wo )<0. 
When RI (wo )R2 (wo);tO , Eq. (4.1.23) gives tanqJI (wo)=tanqJ2 (wo) , namely, 

SI(WO) S2(WO) 

RI (wo) R2 (wo) 
(4.1.24) 

This equation is equivalent to Eq. (4.1.13). In addition, Eq. (4.1.23) leads to the 

inequality RI (wo )R2 (wo )<0. Both cases contradict condition (b) in Theorem 

4.1.2. Hence, condition (b) is necessary. 

On the other hand, if condition (b) is true, Eqs. (4.1.23), (4.1.24) and (4.1.13) 

do not hold. Hence, P12(iw,,u);tO holds for all (W,,u)E [0, wo]x[O, 1]. In other 

words, the stability of one-parameter family can not change as ,u varies on [0, 1] . 

Because PI (A) and P2 (A) are Hurwitz stable, 12 must be Hurwitz stable. This 

completes the proof of Theorem 4.1.3. 
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Besides the functions of phase angle, the Nyquist diagrams can also be used to 

analyze the robust Hurwitz stability of family n as shown in the following theo­

rem. 

Theorem 4.1.4 The family n is robust Hurwitz stable if and only if 

(a) the Nyquist diagram of PI (im)/(im+lt does not encircle the origin, 

(b) the Nyquist diagram of P2 (im)/ PI (im) does not intersect the non-positive 

part of the real axis. 

Proof As stated in Theorem 2.2.11, the Nyquist diagram of PI(im)/(im+W 

does not encircle the origin if and only if PI (A) is Hurwitz stable. Assume that 

PI (A) is Hurwitz stable, it is required proving that condition (b) is necessary and 

sufficient for the Hurwitz stability of pdA,II) when IIE(O, 1]. 

To see the necessity, note that the Hurwitz stability of PI2 (...1,,11) implies 

(4.1.25) 

for all mER and IIE[O, 1] . As PI (A) is Hurwitz stable, PI (im);t:O holds for all 

mER. From this fact and 11>0, we can recast Eq. (4.1.25) as 

l-II+P2(im);t:0. 
II PI (im) 

(4.1.26) 

Observing that (1-11)/11 takes values on [0, +cx:» when II varies on (0,1], we 

conclude that condition (b) is necessary for the stability of P(A,II) , IIE(O, 1]. 
To prove the sufficiency of condition (b), suppose, on the contrary, that there 

exists a positive number jJ E(O, 1] such that P12(A,jJ) is not Hurwitz stable even 

though condition (b) holds. Then, PI2(A,jJ) has a root ...1,(11), which depends 

continuously on II and has a non-negative real part when lI=jJ. As PI(A) is 
Hurwitz stable, ...1,(0) has negative real part. Hence, there must exist a positive 

number j1E(O, jJ] such that Re[A(j1)]=O. This fact gives 

P12(im,j1)=(1-j1)PI (im)+j1P2 (im)=O . (4.1.27) 

Equation (4.1.27) implies that p2(im)/PI(im)<0 since j1>0 and I-j1>O hold. 

This is in contradiction with condition (b). Therefore, condition (b) is sufficient 

for the stability of pd ...1,,11) for any liE (0, 1]. The proof is completed. 

Example 4.1.3 Check the robust Hurwitz stability of 

n=conv{p(A,O), p(A,0.32)}={p(A,k)=q2(A)+k I kE[O, 0.32]}. (4.1.28) 

As shown in Example 4.1.2, p(A,O) is Hurwitz stable. Now, Fig. 4.1.4 indicates 

that the Nyquist diagram of p(im,0.32)/(im+l)2 does not encircle the origin of the 



www.manaraa.com

124 4 Robust Stability of Linear Delay Systems 

complex plane. Hence, the quasi-polynomial p(A,0.32) is Hurwitz stable. In Fig. 
4.1.5, the Nyquist diagram of p(iw,0.32)/ p(iw,O) does not intersect the non­
positive part of the real axis. According to Theorem 4.1.4, the family .Q is robust 
Hurwitz stable. 

1.0 

0.5 
c 
oj 

.~ 0.0 f---*-----~ 
oj 

S 
- -0.5 

-1.0 

0.0 0.5 1.0 1.5 
Real Zoom around the Origin 

Fig. 4.1.4. The Nyquist diagram of p(im,O.32)/(im+ 1)2 

2r--,----------, 

-2~~~ __ ~~~--~~~ 
-0.5 0.0 0.5 1.0 1.5 2.0 

Real 

Fig. 4.1.5. The Nyquist diagram of p(im,0.32)/ p(im,O) 

4.2 Edge Theorem for a Poly topic Family of Quasi­
polynomials 

Real 
0.01 

This section is devoted to the robust Hurwitz stability of a polytope of quasi­

polynomials. Roughly speaking, a polytope is the convex hull of a finite number 

of quasi-polynomials, which are called the vertex quasi-polynomials. What we are 
concern with is to determine whether or not every member of the polytope is 
Hurwitz stable. As seen in Subsection 4.1.1, the stability of the vertex quasi­

polynomials is not able to guarantee the robust stability of the whole family in 
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general. The edge theorem, which will be presented later in this section, shows 

that the stability of the entire family is governed by the edge quasi-polynomials, 
which are defined as the convex combination of two vertex quasi-polynomials. 

4.2.1 Problem Formulation 

Consider a type of linear dynamic systems with multiple time delays 
, 

Bx(t) = LA/q)x(t-,), xERn, (4.2.1) 
j~O 

where 0='0<'1 <"'<', represent the constant time delays, BER nxn is a nonsin­
gular matrix, and Aj(q)ER"xn, j=0,1, ... ,1 are the constant matrices with an un­

certain parametric vector q , which falls into a given box of dimension( s) s 

qEQ={(QI,q2,",qJ I q sq; S(i;, 1siss}cRs • 
-I 

(4.2.2) 

The uncertainties mentioned above may come from the simplification in system 

modeling, or the measurement errors of system parameters and time delays. 

The characteristic function of Eq. (4.2.1) is a quasi-polynomial of order n 
, 

p(A)=det[AB-L e -rjA Aj(q)] 

N N 
(4.2.3) 

=aOO (q)An +[La1k (q)e -hkA ]An-I + ... + Lank (q)e -hkA, 
k~l k~1 

where aoo*O, 0='0<'1<"-<" are linear combinations of 'j' and the coeffi­

cients a ij (q) may depend linearly or nonlinearly on q. Of course, aoo = 1 can be 

set if p(,i) is replaced by p(,i)=det[Al-L:j~oe-rjAB-1Aj(q)]. It is of interest to 

check the robust Hurwitz stability of the system for all admissible parametric per­

turbations. 

Mathematically speaking, we study the interval Hurwitz stability of a family of 

quasi-polynomials of order n as following 

n N 

Q={p(,i)=aoo(q),in + L[Lajk(q)e-hkA],in-j I aoo*O, qEQcRS}. (4.2.4) 
j~1 k~l 

The family Q of quasi-polynomials is said to be Hurwitz stable if and only if all 

the roots of each member of Q stay on the open left half-plane. 

If the coefficients aij(q) are assumed to depend linearly on q, then the family 

Q defined above can be regarded as a polytope generated by the convex combi-



www.manaraa.com

126 4 Robust Stability of Linear Delay Systems 

nations ofa number of quasi-polynomials PI (A,) , P2(.1,), ... , Pr(.1,) of order n in 

Eq. (4.2.3). That is, 

(4.2.5) 

Here, the quasi-polynomials Pj(.1,), j=l, ... ,r are called the vertex quasi­

polynomials, or the generators, of .0. 

Let E[.o] denote the set of all edges of the polytope .0. An edge of polytope 

.0 is a one-dimensional, closed segment [x,y]=conv{x,y} in .0 such that for 

any open segment (xo,Yo)=conv{xo,Yo}\{xo,Yo} in .0 intersecting [x, y], we 

have [xo,yo]c[x,y]. An edge of .0 is in the form of conv{ p;(.1,), Pj(.1,)}, but 

not all such closed segments are necessarily the edges. Given two quasi­

polynomials PI (.1,)* P2(.1,), for example, conv{ P3(.1,) , P2(.1,) } is not an edge if 

P3(.1,) is chosen as [PI (.1,)+P2(.1,)]12 . 

For a quasi-polynomial p(.1,) of order n given by Eq. (4.2.3), let the coefficient 

vector of p( .1,) be defmed by 

(4.2.6) 

Obviously, there is a one-to-one relation between the set of quasi-polynomials in 

Eq. (4.2.4) and the set of their coefficient vectors. For a complex number .1" the 

real and imaginary parts of p(.1,)=O can be expressed in terms of two linear equa­

tions with respect to vector p. Then, it is straightforward to show that A, is a root 

of p(.1,) if and only if 

K(.1,)p=O, K(.1,)ER 2x(nN+n+I), (4.2.7) 

where the entries of matrix K(.1,) are in terms of Re(e-h;l.1,n-j ) and 
Im(e-h;l .1,n-j ). 

For a polytope .0 of quasi-polynomials of order n given by Eq. (4.2.4) and a 

complex number q , the value set of .0 with respect to q is defmed as 

V(.o,q)={K(q)p I p(.1,)E.o}. (4.2.8) 

For a polytope .0 of quasi-polynomials and a fixed q, V(.o,q) is a polytope on 

the complex plane. The following lemma is obviously true. 

Lemma 4.2.1 A given polytope .0 of quasi-polynomials in Eq. (4.2.5) is Hur­

witz stable if and only if V(.o,q) with Req;;::O does not contain any zeros. 

For all p(.1, )E.o and Re.1,;;::O, p(.1, )=aoo.1,n +O(.1,n-l) holds as 1.1,I-HOO. Thus, 

there exists a sufficiently large constant M>O such that O~ V(.o,.1,) for all A, 

with Re.1,;;::O and 1.1,1;;::M . 
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4.2.2 Edge Theorem 

Theorem 4.2.1 A polytope Q of quasi-polynomials of order n given by Eq. 
(4.2.4) is Hurwitz stable if and only if E[Q] , the set of all edges of Q, is Hur­

witz stable. 
The following lemma is essential in the proof, and also helpful in the under­

standing, of Theorem 4.2.1. 

Lemma 4.2.2 Consider a polytope Q of quasi-polynomials of order n given by 

Eq. (4.2.4) and V(Q,~) defined in Eq. (4.2.8). For any Re~20, we have 

E[V(Q,~)]c V(E[Q],~), (4.2.9) 

where E[V] represents the set of all edges of V , respectively. 
The proof of Theorem 4.2.1 and Lemma 4.2.2 are not given in this book be­

cause it requires much knowledge about convex analysis. 

Remark 4.2.1 Though the above statements are made for the Hurwitz stability, 

they are also valid in a more general frame of D-stability. For details, it is referred 

to (Fu et al. 1989). 

4.2.3 Sufficient and Necessary Conditions 

On the basis of the edge theorem, the key step in the stability analysis of a polyto­

pe of quasi-polynomials is to check the robust Hurwitz stability of the edge gener­

ated by two quasi-polynomials. Each edge generated by two quasi-polynomials 
PiCA) and Pj(A) corresponds to a one-parameter family of quasi-polynomials as 
following 

(4.2.10) 

Let Rj(m)=Re[piim)] and Sj(m)=Im[pj(im)] , then, using Theorem 4.1.2, 
Theorem 4.1.3 and Theorem 4.1.4 gives the following theorems. 

Theorem 4.2.2 The polytope Q defined in Eq. (4.2.5) is Hurwitz stable if and 

only if the following two conditions hold true. 

(a) All vertex quasi-polynomials of Q are Hurwitz stable. 

(b) For each edge between PiCA) and pj(A),ifthereisan moER suchthat 

(4.2.11) 

then either 

(4.2.12a) 
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(4.2. 12b) 

is true when Rj (mo)Rj (mo)=O . 

Theorem 4.2.3 The family Q defmed in Eq. (4.2.5) is Hurwitz stable if and 
only ifthe following two conditions hold. 

(a) All vertex quasi-polynomials of Q are Hurwitz stable. 

(b) For each edge between Pj(A) and piA), the phase functions satisfy 

qJj(m)-qJ/m);t:±n. (4.2.13) 

Theorem 4.2.4 Let E I , E2 , ••• , Et be the edges of the polytope defined in Eq. 

(4.2.S), Pko(A) and Pkl(A) be the vertex quasi-polynomials of Ek. Then, Q is 

Hurwitz stable if and only if the following two conditions hold for each edge E k • 

(a) The Nyquist diagram of Pko(im)/(im+1Y does not encircle the origin of the 
complex plane. 

(b) The Nyquist diagram of Pkl(im)IPko(im) does not cross the non-negative 
part of the real axis. 

The testing procedure of vertex quasi-polynomials can be organized this way. 
First, check the Hurwitz stability on an arbitrarily chosen vertex, say, PIO(A). 

Then, check the robust Hurwitz stability of the edges, which contain PIO (A), ac­
cording to condition (b) mentioned above. Afterwards, testify the stability of the 

edges that share a vertex with one of the previous edges, and so on. Because the 
set of edges of a polytope is connected, the robust Hurwitz stability of all edges 
can be verified this way in a fmite number of steps. 

By the way, some results are available to reduce the number of edge quasi­

polynomials to be testified in the stability analysis. See, for example, (Kharitonov 

and Zhabko 1994). 

Example 4.2.1 Study the robust Hurwitz stability of a polytope of quasi­

polynomials as following 

where 

Q={p(A,k,h) I kE[-0.0144, -0.0029], hE[0.739, 2.S8]} 

=conv{po(A), PI(A), P2(A), P3(A)}, 

p(A,k,h)=hA3 +(6h+ I)A2 +(13.7Sh+6+ 1.82he-O.1652 +0.42he-0.3H)A 

+ 13.7S+ 1.82e -0.1652 +(0.42-130Sk)e-0.332 , 

(4.2.14) 
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Po(A)= p(A,-O.OI44,O.739), PI (,1)= p(A,-O.OI44,2.58), 

P2 (,1)= p(A,-O.0029,2.58), P3 (,1)= p(A,-O.0029,O.739). 

30 
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Fig. 4.2.1. The Nyquist diagram for the stability test of the vertex quasi-polynomial Po V,) 
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Fig. 4.2.2. The Nyquist diagrams for the stability test of edge quasi-polynomials; 

a. PI (im)/ Po (im) , b. P2 (im)/ PI (im) , c. P3 (im)/ P2 (im), d. Po (im)/ P3 (im) 
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From Theorem 4.2.3, we see that n is robust Hurwitz stable due to the follow­
ing two facts. 

(a) The Nyquist diagram of Po (ilO)/(ilO+l)3 does not encircle the origin of the 

complex plane as shown in Fig. 4.2.1. This implies that the vertex quasi­

polynomial of Po (A,) is Hurwitz stable. 

(b) As shown in Fig. 4.2.2, the Nyquist diagrams of PI(ilO) / Po(ilO) , 

p2(ilO)/ PI (ilO), P3(ilO) / P2(ilO) and Po(ilO) / P3(ilO) do not intersect with the 
non-negative real axis so that the four edge quasi-polynomials are robust Hurwitz 

stable. For instance, the Nyquist diagrams of PI (ilO)/ Po(ilO) indicates that the 

edge quasi-polynomial generated by Po(A,) and PI (A,) is robust Hurwitz stable. 

4.3 Dixon's Resultant Elimination 

In order to determine the condition of marginal stability when a system has a 

number of commensurate time delays, one usually needs to solve two polynomial 

equations. Dixon's resultant elimination, see (Dixon 1908) and (Yang et al. 

1996b), is one of the most effective algorithms to solve polynomial equations 

though these polynomial equations may not have any solutions in closed form. 

The basic principle of resultant elimination includes two steps. First, a set of poly­
nomial equations is constructed from the given polynomial equations and regarded 

as a set of linear equations with respect to the different powers of unknown vari­

ables. Then, the original polynomial equations are studied on the basis of theory of 

linear matrix equation. The Dixon's resultant elimination can be used to the stabil­

ity analysis of polynomials and quasi-polynomials. 

4.3.1 Dixon's Resultant Elimination 

To acquire a good understanding of the Dixon's resultant elimination, we first 

consider two polynomials f(x) and g(x) of order n, and define 

8(X,a)=_I_det[f(X) g(X)] f(x)g(a)- f(a)g(x) . 
x-a f(a) g(a) x-a 

(4.3.1) 

Obviously, 8(x,a) is a polynomial of order n-l with respect to x and a, re­

spectively. At any common root Xo of f(x) and g(x), the polynomial 8(x,a) 
vanishes for any value a. Hence, the coefficients cj(xo), i=O, 1, ... , n-l of 

8(x,a) with respect to a also vanish. That is, 
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C;(XO) =0, i=O, 1, ... , n-l. (4.3.2) 

Let the distinct powers of x be denoted by e1 =xn-1 , ••• , en-1 =x, en =xo =1, then 
we can rewrite the equations in Eq. (4.3.2) in the fonn oflinear matrix equation 

;:I=r~1 M . . ' 

en 0 

(4.3.3) 

The detenninant of coefficient matrix M, which is the Bezout resultant of f(x) 

and g(x) , must be zero since Eq. (4.3.3) has non-zero solution. That is to say, 

detM=O if f(x) and g(x) has common roots. 

If the degrees of f(x) and g(x) satisfy deg(j,x)=n>m=deg(g,x) , this pro­

cedure can also be perfonned with f(x) and O·x n + ... 0·xm+1 + g(x). 

Now we consider three polynomial equations in two unknowns x and y 

ps: .t;(x,y)=O, f2(X,y) =0, f3(X,y) =0, (4.3.4) 

and introduce Dixon's resultant. Though it is possible to elucidate the method of 

Dixon's resultant elimination in a more general frame, the following results are 

enough for the purpose of stability analysis. We first define a polynomial in new 

variables a and 13 in the fonn of a detenninant 

[
ftCx,y) f2(X,y) f3(X,y)] 

L1(x,y;a,p)=det .t;(a,y) f2(a,y) f3(a,y) . 

.t; (a,p) f2 (a,p) f3 (a,p) 

(4.3.5) 

Because L1(a,y;a,p)=O and L1(x,p;a,p)=O, L1(x,y;a,p) must possess a factor 

(x-a)(y- 13) . Thus, we introduce a new polynomial 

S:( . 13) L1(x,y;a,p) 
u x,y,a, 

(x-a)(y- 13) 
(4.3.6) 

and refer to it as the Dixon's reduced polynomial of PS . Similar to the above 

simple case, this reduced polynomial severs as a bridge to express Eq. (4.3.4) 

in terms oflinear matrix equation. Ifwe expand J;(x,y) as 

then we have 

p q 

"" (k) i j fk(X,y) = L..L..cij x Y , 
i=O j=O 

k = 1,2,3 (4.3.7) 
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Zp-l q-l p-l Zq-l 

15(x,y;a,p) = IIIIdijklxiyjakpl. 
k~O I~O i~O j~O 

Example 4.3.1 Consider three polynomials in two variables sand t 

PI (s,t)=(SZ +SZt)x-szt+t+s z + 1, 

Straightforward computation gives 

[
PI (s,t) 

L1(s,t;a,p)=det PI (a,t) 

PI (a,p) 

Pz (s,t) 

pz (a,t) 

pz(a,p) 

[ 
PI (S,t)-PI (a,t) PZ (s,t)-PZ (a,t) P3 (S,t)-P3 (a,t) • 

=det PI(a,t)-PI(a,p) Pz(a,t)-Pz(a,p) P3(a,t)-P3(a,p) 

PI (a,p) Pz(a,p) P3(a,p) 

=(s-a)(t-p)(c1a 3 +cza Z +c3a+c4 )· 

Thus, the Dixon's reduced polynomial is 

where 

C 1 =(2x+2z-2)s+(6y-4x-z-2)t+6y-2x+z-4, 

Cz =(6y-4x-z-2)st+(6y-2x+z-4)s+(2x-z-2)t+2x-z-2, 

C3 =(2x-z-2)st+(2x- z+4)s+(2x- z-2)t+ 2x+ z-4, 

c4 =(2x-z-2)st+(2x-z+4)s . 

(4.3.8) 

(4.3.9) 

(4.3.10) 

(4.3.11a) 

(4.3.11b) 

Here, P = 2, q = 1, so the distinct powers of a and pare a 3 , a Z , a and 1, 

while the distinct powers in 15 with respect to sand tare st, s, t and 1 . The 

number of distinct powers of 15 with respect to a and p is the same as that of 

distinct powers of 15 with respect to sand t . That is, they are 2 pq = 4. 

We assume that different terms have different powers. Let cj(x,y) , 

j = 1,2, ···,2pq, denote the coefficients of 15(x,y;a,p) with respect to the dis­

tinct powers of a and p in a properly given order of the powers. If (xo ,Yo) is a 
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common root of PS, then 8(xo,yo;a,j3) =0 holds true for any a and j3. As a 
and j3 are free variables, (xo,Yo) must satisfy 

C1 (x,y)=O, c2(x,y)=0, ... , c2p/x,y) = o. (4.3.12) 

These equations are called the set of Dixon's reduced polynomial equations from 

PS . Let the distinct powers be e1 , e2,.··, e2pq_2 == x, e2pq_1 == y, and e2pq == 1 , 
respectively, Eq. (4.3.12) can be recast as a linear matrix equation like Eq. (4.3.3). 

If PS has any common real roots, then Eq. (4.3.3) has non-zero solution since 

e2pq = 1 *" O. Thus, the determinant J= detM , which is called the Dixon's resul­
tant of PS , must vanish if PS has any real common root. The above analysis 

can be summarized as the following theorem. 

Theorem 4.3.1 If the set of polynomial equations PS has a real solution, it is 

necessary that the Dixon's resultant vanishes. Conversely, ifEq. (4.3.3) has a non­

zero solution which is compatible to the powers (e1 ,e2,.··, e2pq )' then PS has a 
solution. 

The Gauss elimination makes it possible to solve Eq. (4.3.3) recurrently by 

transforming M into an upper-triangle matrix. If the solution of Eq. (4.3.3) is 

compatible to the powers (e1 ,e2,.··, e2pQ )' it is easy to determine the correspond­

ing x and y. Note that it is not necessary that all the terms in Eq. (4.3.7) appear 

in stability analysis. Though some "zero" coefficients can be added to Ik(X,y) in 

this case to achieve such a complete form as mentioned in (Kapur et al. 1994), a 

linear matrix equation like Eq. (4.3.3) is usually enough for our purpose. 

Example 4.3.2 Consider the characteristic equation corresponding to a dynamic 
system with two commensurate time delays 

(4.3.13) 

where a>O, ~>O and 1">0. The system free of time delays is asymptotically sta­

ble if and only if the following Routh-Hurwitz stability conditions are true 

When 00, the marginal stability condition p(im,1")=O can be cast as 

{
h (x,y)==-m2 (a+2~)+a8m y+2ayx2 +a(1-y)=O, 

PS: 12 (x,y)==-m 3 +m+2a~m+a8mx-2ayxy=0, 

13 (x,y)==x 2+y2-l=0, 

(4.3.14) 

(4.3.15) 

where x==cosm1" and y==sinm1". The Dixon's reduced polynomial equations can 

be derived and classified into two groups 
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where 

G1: gj(x,y)=O, i=I,2,3,4, gSI(X,y)=O, 

G2: gj(x,y)=O, i=1,2,3,4, gS2(X,y)=0, 

g3 = [-2aoywy+(-2ay-4yq+ao2)w2 +2ay(y+l)]x 

+2yw[w2 -(l+2aq)]y -OW4 +ow2(l+2aq), 

g4 =2yw[w 2 -(1+2aq)]x-2ayowy2 +[(ao2 +4qy+2ay)w2 

-2ay(1+y)]y -(a+2q)ow3 +ao(l-y)w, 

(4.3.16) 

(4.3.17) 

For G1 in Eq. (4.3.l6), let the distinct powers of x and y be denoted by 
el = y2, e2 =xy, e3 =X, e4 = Y and es =1, then we have a linear matrix equation 
M[el ... es]T =,.9. We find, through direct computation, that the corresponding 

Dixon's resultant is not zero and reads (up to a non-zero factor) 

J(w)=w[w 6 +(a2 +4q2 _2)W4 

+( 4a2q2 +1-2a2 -2ya2 -4ayq)w2 +(y+l)2 a 2]. 
(4.3.l8) 

For G2, we can show that the corresponding Dixon's resultant yields J(w)=O. 

Using the Gauss elimination transfers the corresponding Dixon's matrix Minto 

the following form 

* * * * * 
0 * * * * 

M~M= 0 0 a2l a22 a23 

0 0 0 al2 a l3 

0 0 0 0 0 

This gives a set of linear equations in unknowns x and y 

{
a2Ix+a22y+a23 = 0, 

a12 y+aI3 =0. 

( 4.3.l9) 

(4.3.20) 
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Solving Eq. (4.3.20) for x and y, and then substituting them into x 2+y2=1, we 

have a polynomial J(m) with even order terms only 

(4.3.21) 

where 

a3 =(8s=2 _52 -4)a 4 + 2[6+ 16s=2 (S=2 -1)+52 (1-2s=2 )_5 2 ]a 2 +4(2s=2 -1), 

a4 =2[(y+ 1-2s=2 )5 2 +8s=2 (S=2 -1)+3-y 2 ]a 4 +4a3 5 2yS= 

+[_52 +8(2-y2)e +4(y2 -2)]a2 +1, 

as =a 2 {[ _(1+y)2 52 +4(1-y2)(2e -1)]a 2 +2(1_y2)} , 

(4.3.22) 

In order that PS has common real roots, m must be a real root of J(m) or 

J(m). For any given a, 5, y and S=, we can determine whether J(m) or J(m) 
has real roots or not and find numerically all the real roots of J (m) =0 or J (m) =0 
if there are any. 

The stability switches of a linear system with a single time delay have been dis­

cussed in Subsection 3.5.1 by using the generalized Sturm criterion, which enables 

one to determine whether the system exhibits no stability switch, exact one stabil­
ity switch or more than one stability switch under certain parameter combinations. 

If the system undergoes more than one stability switch, however, we have to find 

out numerically the critical values of time delay to obtain detailed information. 

When commensurate time delays are involved in a system, the method of Dixon's 

resultant elimination is effective for analyzing the stability switch. 

As seen in Subsection 3.5.1, three main steps are involved in the analysis of 

stability switches. First, find out all the possible critical frequencies and the corre­

sponding critical values of time delays. Then, determine the sign of the derivative 

of real part of each characteristic root with respect to the time delay. Finally, rank 

the critical values of time delays and count the number of stability switches. 

Example 4.3.3 Check the stability switches of the dynamic system with two 

commensurate time delays governed by Eq. (4.3.13) when 

a=2, S==0.02, y=O.3, 5=0.5. (4.3.23) 
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It is easy to know that m=O is the unique root of J(m) , and the corresponding 
polynomial Eq. (4.3.15) has no common real roots. The real roots of J(m) can be 
numerically found out. They are m=± 0.6428 and m=± 1.1893. When 
m=± 1.1893, the critical values of time delay r are 0.5234,5.807,11.09,16.37, 
21.66, 26.94, 32.22, ... , and d(ReA)/dr>O at each pair of such (m,r) , whereas 
m=± 0.6428 gives the critical values of r such as 2.816, 12.59, 22.37, 32.14, 
41.91,51.69,61.46, ... , and d(ReA)/dr<O at each pair of such (m,r). The critical 
values of r can be ranked as following 

0.5234<2.816< 5.807<11.09 < 12.59< 16.37 ... (4.3.24) 

Noting that 5.807 and 11.09 are two critical values of r corresponding to the 
same frequency m =1.1893, we conclude as done in Subsection 3.5.1 that the sys­
tem is Hurwitz stable when rE[O, 0.5234) and (2.816, 5.807), but unstable for 
rE (0.5234,2.816) and (5.807, +(0). As a result, the number of stability switches 
is 3. 

4.3.2 Robust D-stability of One-parameter Family of Polynomials 

As a direct application of Dixon's resultant elimination, the D-stability is dis­
cussed for a special one-parameter family of polynomials in this subsection. For 
this purpose, let D be a simply connected domain given on the complex plane 
with the boundary aD governed by a polynomial equation b(x,y)=O. As men­
tioned in the introduction of this chapter, D should be taken as the open unit disk 
on the complex plane in analyzing the Schur stability of discrete-time dynamic 
systems. Thus, aD is governed by b(x,y)=x2+y2-1=0. For the analysis of the 
Hurwitz stability of continuous-time dynamic systems, D should be the open left 

half-plane and b(x,y)=x=O. A family of polynomials is D-stable if and only if all 
the roots of each member of the family stay in D. 

Now consider the D-stability of a one-parameter family of polynomials gener­

ated by two polynomials PI (A) and P2 (A) as following 

(4.3.25) 

Obviously, PI2(A,p) is analytic with respect to A and p. The root A(p) of 

PuC A,p) is continuous with respect to p and can not suddenly appear or disap­
pear, or change its multiplicity at a finite point on the complex plane. With an in­
crease of p, thus, the sum of multiplicity of all roots of pdA,p) =0 in DC, the 
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complement of set D , can change only if a root appears on or crosses the bound­

ary aD. Thus, we have the following theorem. 
Theorem 4.3.2 The one-parameter family P12(:t,Ji) defined in Eq. (4.3.25) is 

D-stable if and only if the following two conditions hold true. 

(a) At least either PI (:t) or P2 (:t) has all characteristic roots in D. 

(b) The inequality PI2(x+iY,Ji):;tO holds for all JiE[O, 1] and all (x,Y)EaD. 

The Dixon's resultant elimination enables one to check condition (b) without 

any difficulty. We first consider a special case, i.e., the robust Hurwitz stability. 

The marginal stability condition P12 (iy ,Ji) =0 indicates that the real and imaginary 

parts satisfy R12 (y,Ji) =0 and S12(y,Ji) =0. Thus, the resultant J I2 (Ji) of poly no­

mials RI2 (y,Ji) and SI2(y,Ji) in y is a polynomial with respect to Ji and must 

be zero. That is, 

J I2 (Ji)= Resultant (R12 ,S12 ,y) =0. (4.3.26) 

It is always feasible to find out numerically all the roots JiEAI2 c [0, 1] of this 

polynomial J 12 (Ji) . The robust Hurwitz stability of PI2(:t,Ji) for JiE[O, 1] is 

governed by the stability of PI (:t) and P2 (:t) plus the polynomials PI2 (:t,Ji) 

corresponding to JiEAll C [0, 1], namely by the polynomial set 

(4.3.27) 

This means that the test of robust Hurwitz stability of family PI2 (:t,Ji) can be 

simplified to the test of robust Hurwitz stability of 7;2 . 
Similar to the above simple case, we need to find out the testing set of polyno­

mials for the general case. Separate the real and imaginary parts of PI2 (x+iy ,Ji) 

and denote them by R12 (x,y,Ji) , SI2(X,y,Ji) , respectively. Then, condition (b) in 
Theorem 4.3.3 holds if and only if the following set of polynomial equations 

if; (x,y) =R12 (x,y,Ji) =0, 

ps: 12(X,y):S12(x'~Ji)=0' 
13 (x,y)=b(x,y)-O 

(4.3.28) 

has no real common solutions. Thus, we get the testing set if the critical values of 

parameter JiE[O, 1] render PI2(:t,Ji) marginal stable. Let J 12 (Ji) denote the cor­

responding Dixon's resultant. Then, J I2 (Ji) is a polynomial of finite order with 

respect to Ji and must be zero if PS has any common roots. If J 12 (Ji) is not al­

ways zero, then PS has common roots only when Ji reaches the roots of J I2 (Ji) 

from Theorem 4.3.2. These roots can be numerically located and denoted as 

All c[O, 1] . Otherwise, when J I2 (Ji) equals identically to zero, it was proved in 



www.manaraa.com

138 4 Robust Stability of Linear Delay Systems 

(Kapur et al. 1994) that there exists a non-zero condition J12 (Jl) =0 for which PS 
has convnon roots. Or directly, solving Eq. (4.3.3) for x and y with help of the 

Gauss elimination and substituting them into the boundary condition b(x,y)=O 

we can also obtain a polynomial J12 (Jl) =0 and find out all, if any, real roots 

A12 c[O, 1] of J12 (Jl) . With an increase of Jl from 0 to 1, therefore, the sum of 

multiplicity of all roots of P12 (A,Jl )=0 in the complement DC of D can change 

only if Jl reaches the zeros of J 12 (Jl) or J 12 (Jl) in [0, 1] . Let T12 be the union 

set of PI (A), P2 (A) and all the polynomials P12 (A,Jl) corresponding to Jl E A12 
or JlEA12 , namely, 

(4.3.29) 

Then, it is obvious that the one-parameter family P12 (A,Jl) is D-stable if and only 

if T12 is D-stable. Hence, the above analysis can be summarized as following. 

Theorem 4.3.3 The one-parameter family P12 (A,Jl) of polynomials is D-stable 

if and only if 1;2 is D-stable. 

The theorem indicates that 1;2 serves as a testing set that governs the robust D­

stability of the whole family of polynomials P12(A,Jl) for all JlE[O, 1]. This is 

important because the number of elements of T12 is finite. 

We note that PS has no real common solution if and only if one of the follow­

ing cases occur: (a)J12 Cu) or J 12 (Jl) has no real zeros in [0, 1]; or (b) at each 

Jl E A12 or JlEA12' Eq. (4.3.3) has no real solution; or (c) Eq. (4.3.3) has a solu­

tion Zo which gives a pair values of x = X o' Y = Yo but it is not compatible to the 
powers in z = zo' Thus in practice, the stability test can be carried out easily by 

computing the Dixon's resultant and solving some linear matrix equations. 

In what follows, two simple examples are given to demonstrate the Dixon's re­

sultant approach. Because the testing set for the robust Hurwitz stability can be 

easily obtained by using the resultant in general sense, the following two examples 

are all about the robust Schur stability. 

Example 4.3.4 Consider first a simple polynomial p(A)=A2+a l A+a2 . It is 

easy to verify that the roots of peA) stay in D, the open unit circular disk on the 

complex plane when al =-21/20 and a2 =27/100. Now, we study the robust 

Schur stability of the family 

Q={p(A)=A2 +a A+ 27 1-~X1.2~a ~-~xO.8} 
1 100 20 1 20 

(4.3.30) 
2 63 27 2 21 27 

=conv{A --A+- A --A+-} 
50 100' 25 100' 
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when al is subject to a variation of ± 20%. It is easy to find that the two vertex 
polynomials are Schur stable. We require checking whether the polynomial family 

P (A Ji)=A2 +(_ 63 +3.!.Ji)A+ 27 
12 , 50 50 100 

(4.3.31) 

has no roots on or outside D for all JiE[O, 1]. Straightforward computation gives 

the Dixon's resultant of the real and imaginary parts R(x,y,Ji) and S(x,y,Ji) of 

PI2 (A,Ji) , as well as the boundary polynomial b(x,y)=x2 + y2 -1 , as following 

J(Ji)= (42Ji+l)(42Ji-253). (4.3.32) 

Here J(Ji) is determined except for a non-zero constant factor. Obviously, J(Ji) 

has no real root JiE[O, 1] . As a result, all the characteristic roots of family 

PI2 (A,Ji) stay in D . Thus, the polytope Q is robust Schur stable. 

Example 4.3.5 Consider now the following one-parameter family Q 

(4.3.33) 

with a variation of r=20%. It is also easy to know that the two vertex polynomi­

als are Schur stable. What follows is to check whether all the roots of family 

(4.3.34) 

fall into D. 

Straightforward computation shows that the Dixon's reduced polynomial <5 , 
derived from R(x,y,Ji)' S(x,y,Ji) and b(x,y)=x2+y2-1, has 11 terms, a com­

mon factor y exists apparently in some of the reduced polynomials, and two of 

the reduced polynomials are apparently proportional to b(x,y). Hence, we need to 

study the case when y=O and x=±I. If there exists a JiE[O, 1] such that 

R(I,O,Ji)=O and S(l,O,Ji)=O, or R(-I,O,Ji)=O and S(-I,O,Ji)=O, then the poly­

tope is not robust Schur stable. It is easy to see that this is not the case. After 

eliminating one apparent redundant polynomial and the common factor y, we can 

write the set of Dixon's reduced polynomial equations in the form 

(4.3.35) 

Using the Gauss elimination, we transform if into the following form 
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* * * * * * * * 
0 * * * * * * * 
0 0 * * * * * * 
0 0 0 * * * * * 
0 0 0 0 0 -1 0 24 

M~ 
0 0 0 0 0 0 0 -14677 + 94,u 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Then, Eq. (4.3.35), together with Eq. (4.3.36), gives 

-14677+94,u=O, -x+24=O. 

(4.3.36) 

(4.3.37) 

The solution of Eq. (4.3.37) does not fall into the demanded intervals ,uE[O, 1] 

and XE[ -1, 1] . Thus, the set of Dixon's reduced polynomials derived from 

R(x,y,,u) , S(x,y,,u) and b(x,y) has no common real roots at all. Therefore, the 

inequality P12 (x+iy,,u)*O holds true for all ,uE[O, 1] . As a result, the polytope 

given in Eq. (4.3.33) is robust Schur stable. 

4.4 Robust Stability of Systems with Uncertain Commen­
surate Time Delays 

This section deals with the robust Hurwitz stability of a linear system with uncer­

tain commensurate time delays. It is actually the problem of robust Hurwitz stabil­

ity of a non-polytopic family of quasi-polynomials. Though the intensive studies 

have been made on the robust stability of a polytope of quasi-polynomials, the test 

of robust stability for a non-polytopic family of quasi-polynomials is still an open 

problem. On the basis of the edge theorem, the section will present a necessary 

and sufficient condition for the robust Hurwitz stability of the whole family. The 

condition gives an effective procedure of graphic testing for the Hurwitz stability 

of the family. One may not favor the graphic method at first, but enjoys its effec­

tiveness later, especially after understanding the difficulty in checking the robust 

stability of quasi-polynomials. In fact, the graphic test has to be made even in the 

case when the time delays are fixed. 
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4.4.1 Problem Formulation 

We assume that the time delays in the dynamic system of concern to be commen­

surate so that the characteristic equation of system is in the form of a quasi­

polynomial 

m n-l 

p(A)=X+ L~>jk(q)e-kATAn-I-j =0, (4.4.1) 
k=O j=O 

where T is a positive, uncertain constant and yields 

(4.4.2) 

and the uncertain parametric vector q falls into a given box of dimension(s) s 

qEQ={(QI,q2,··,q.) I Q. ~Qj ~qi'l~i~s}cRS . 
_I 

(4.4.3) 

The uncertainties mentioned above may come from the simplification in system 

modeling, the measurement errors of system parameters and time delays, etc. 

The quasi-polynomial in Eq. (4.4.1) under conditions (4.4.2) and (4.4.3) can be 

written as a family of quasi-polynomials 

m n-l 

II={ p(A) =An + LLajk (q)e-kTA An-1- j I qEQ, r~T~f}. 
k=O j=O 

(4.4.4) 

In many applications, it is required that the system should be robust Hurwitz stable 

under all possible parameter combinations. That is, the roots of any member in 

family II should have negative real parts under all desired parameter combina­

tions. 

The aim of this subsection is to present a new approach to testifying the robust 

stability of the family II of quasi-polynomials. It is assumed hereinafter that the 

coefficients ajk(q) in Eq. (4.4.1) depend linearly on the uncertain parametric 

vector q. Of course, II is not polytopic provided that any uncertainty exists in 

the common factor T of commensurate time delays, but it is truly a polytope for 

any fixed T. Thus, the test of robust stability can be completed on the basis of 

edge theorem. As a result, a sufficient and necessary condition for the robust 

Hurwitz stability of the entire polytope of quasi-polynomials is derived. This con­

dition gives a very simple and effective graphic testing approach that determines 

whether the family II of quasi-polynomials is robust Hurwitz stable or not. 

Given a TE[r, f] , a polytope with parameter T is defined as 
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m n-l 

.oT={ p(A,) =A,n+ I~>jk(q)e-krAA,n-l-j I qEQ}, (4.4.5) 
k=O j=O 

which is generated by the convex hull of a set of quasi-polynomials 
Pl(A"r),P2(A"r), ... , Pr(A"r) corresponding to the comer of parametric box Q, 

namely, 

Obviously, the family n in Eq. (4.4.5) can be written as 

n =U{.oT I I~r~T}. 

(4.4.6) 

(4.4.7) 

The family n is robust Hurwitz stable if and only if .oT is robust Hurwitz stable 
for any given rE[r, r]. Moreover, the edge theorem in (Fu et al. 1989) indicates 
that the polytope .or is robust Hurwitz stable if and only if all the edge quasi­
polynomials are robust Hurwitz stable. 

Each edge, generated by the vertex polynomials Pi(A"r) and pj(A"r) of the 
polytope .oT' corresponds to a two-parameter family of quasi-polynomials 

(4.4.8) 

Because Pi(A"r) and pij(A"r,fl) are analytic with respect to A" rand fl as 

well, any root A,=A,(r) of Pi(A"r)=O, and A,=A,(r,fl) of pij(A"r,fl)=O can not 

suddenly appear or disappear, or change its multiplicity at a finite point on the 

complex plane. With an increase of fl or r , therefore, the sum of the multiplicity 

of roots of Pi(A"r)=O or pij(A"r,fl)=O on the right half-plane can change only if 

a root appears on or crosses the imaginary axis. The above fact can be summarized 

as the following theorem. 

Theorem 4.4.1 The non-polytopic family n of quasi-polynomials is robust 
Hurwitz stable if and only if the following two statements are true. 

(a) At least either of the one-parameter families of vertex quasi-polynomials 

Pi(A"r) and pj(A"r) is robust Hurwitz stable. That is, there exists a common 

factor roE[r, r] of commensurate time delays such that Pi(A"r) (or pj(A"r)) is 

Hurwitz stable, and Pi(im,r);tO (or p/im,r);tO) is true for any rE[r, r] and 

m~O. 

(b) For each member of the two-parameter families of edge quasi-polynomials 

pij(A"r,fl) defined in Eq. (4.4.8), the inequality pij(im,r,fl);tO holds true for any 

flE[O, 1], rE[I, r] and m~O. 
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As the inequalities p;(im;r);tO (or pj(im;r);tO) and pij(im,T,p);tO hold true 

for sufficiently large m, the stability test of the parametric families of quasi­

polynomials can be checked within a fmite range of m . 
Now, a number of criteria are available to testify the Hurwitz stability of a 

given quasi-polynomial, see, for example, Theorem 2.2.7 and Theorem 2.2.11. 

However, these criteria do not work for checking condition (a) or (b). Very tedi­

ous computation is usually involved in testing procedures when the current 

methods are implemented. This subsection, thus, is devoted to developing the 

simple condition that governs the robust Hurwitz stability of the whole family of 

quasi-polynomials, as well as an effective method to complete the robust stability 

test. 

The marginal stability condition p(im,T)=O is a transcendental equation in two 

unknowns m and T. If the characteristic function in Eq. (4.4.1) is in the form 

p(A,T)=P(A)+Q(A)e-'<T with degP>degQ, the equation p(im,T)=O gives two 

linear equations with respect to cosmT and sinmT. Solving p(im,T)=O for 

cosmT and sinmT , and substituting the solutions into cos2 mT+sin 2 mT-l=O, we 

have a polynomial equation independent of T. Thus, we can numerically deter­

mine the critical values of m , and then figure out the corresponding critical values 

of T. 

In order to solve the equation p(im,T)=O in a more complicated form for m 
and T, it is necessary to solve two polynomial equations simultaneously for un­

knowns cosmT and sinmT, rather than two linear equations, because we can ex­

pand cos(kmT) and sin(kmT) to the polynomials with respect to cosmT and 

sinmT. This problem has no closed-form solutions, whereas pure numerical pro­

cedures usually involve an infinite number of computational steps. It is natural, 
thus, to develop a computationally traceable procedure for calculating the maxi­

mal delay factor. For this purpose, the Dixon's resultant elimination is helpful. 

4.4.2 Stability of Vertex Quasi-polynomials 

To check whether the inequality Pk(im,T);tO, k=i,j holds true or not for any 

TE[I, f] and m~O, we consider a set of polynomial equations in two unknowns 

x=cosmT and y=sinmT as following 

{
J; (X,y)=Rk (x,y,m) =0, 

PSk : f2 (X,y)=Sk (x,y,m)=O, 

f3(X,y)=x 2 +y2 -1=0, 

(4.4.9) 
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where Rk(x,y,m)= Re[Pk(im,'r)] and Sk(x,y,m)= Im[pk(im,'r)], whereas m is 
taken as a parameter. The real and imaginary parts Rk(x,y,m) and Sk(x,y,m) are 
two polynomials in x, y and m since we can expand cos(km'r) and sin(km'r) to 
the polynomials with respect to cosm'r and sinm'r. Obviously, p(im,'r)=O has a 

real root (m*,'r*)E[O, +oo)x[r, f] if and only if PSk has a real common root 
( cosm * 'r *, sinm· 'r *, m *) . 

Let Jk(m) denote the Dixon's resultant of PSk . Then, Jk(m) is a polynomial 

with respect to m. As stated in Theorem 4.3.2, Jk(m) must be zero if PSk has a 
real common root. That is, m * must be a positive root of J k ( m) . Though J k ( m ) 

may keep being zero for all m~O, we can always fmd a solution in the form of 
x=cosm'r=xO(m) and y=sinm'r=yO(m) of PSk by using Dixon's resultant elimi­

nation in Subsection 4.3.2 if the solution of corresponding Dixon's reduced linear 

equation is compatible to PSk • Substituting them into x 2 + y2 -1=0 gives a poly­
nomial Jk (m) . Then, m * must be the positive roots of Jk (m) . By using the fol­

lowing two sets corresponding to PSk 

(4.4.10a) 

(4.4. lOb) 

we are in the position to summarize the following theorem. 
Theorem 4.4.2 The one-parameter family Pk(A,'r) is robust Hurwitz stable for 

any 'rE[r, f] if and only if the following two statements are true. 
(a) Pk (A,r) is Hurwitz stable; 
(b) One of the following three conditions holds. (i) 0c is null. (ii) 0c is not 

null, but the solution of Dixon's reduced linear equation is not compatible to PSk • 

(iii) Tk is null. 

Now, we can easily derive a polynomial R2(m)(~Rk(x,y,m)) with positive 

leading coefficient or R2(m)(~Rk(x,y,m)) with negative leading coefficient by 

replacing cosm'r and sinm'r in Rk (x,y,m) with 1 or -1 . Thus, it is possible to 

solve the polynomial R2 (m) numerically for the maximal real root mo. If m>mo , 

either Rk(x,y,m)~R2(m»0 or Rk(x,y,m)~R2(m)<0 holds. In order that the 

condition Pk(im,'r):;t:O holds for (m,'r)E[O, +oo)x[r, f], it is necessary to check 

the conditions in Theorem 4.4.2 on the region [0, mo ]x[r, f] . 
On the basis of Theorem 4.4.2, the robust stability analysis of vertex quasi­

polynomials can be completed with help of the computer algebra platforms such 

as MAPLE and MA TLAB. In practice, the MAPLE command "implicitplot" or 

better "algcurves[plotJeal_curve]", or MATLAB command "ezplot" provides an 
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effective graphical tool to testify if Pk(iw;r);t:O is true on [0, wo]x[r, 'f] . 

Graphically, we need to check whether the graphs of coswr=xo (w) and 

sinwr= yO (w) intersect with each other on [0, Wo ]x[r, 'f] , or even more directly 

to check whether the graphs of Re[Pk(iw,r)]=O and Im[Pk(iw,r)]=O intersect 

with each other on [0, wo]x[r, 'f] . 

4.4.3 Stability of Edge Quasi-polynomials 

Now, we check whether the inequality pij(iw,r,f.1);t:O holds true for any f.1E[O, 1] , 

rE[r, 'f] and w~O according to Theorem 4.4.1. This task is equivalent to check 

whether the following polynomial equation 

(4.4.11) 

has no real root z for any rE[r, 'f] and w~O, where Z2 =(1-f.1)/ f.1 takes all the 

non-negative values with an increase of f.1 in [0, 1]. 

Let 

R;(w,r)=Re[pi (iw,r)], Si(w,r)=Im[Pi (iw,r)], i=l, 2,.··, r . (4.4.12) 

Then, we write Eq. (4.1.11) as 

namely, 

where 

[Z2 Ri (w,r)+ R j (w,r)]2 + [Z2 Si (w,r) + S/w,r)] 2 =0, 

{
a=a(W,r)=Ri2 (w,r)+Si2 (w,r)~O, 
b=b(w,r)=2[Ri (w,r)R/w,r)+Si (w,r)Sj (w,r)], 

c=c(w,r)=R: (w,r)+S: (w,r)~O. 

From the elementary algebra, the following statement is obviously true. 

(4.4.13) 

(4.4.14) 

(4.4.15) 

Lemma 4.4.1 For a>O, az4 +bz2 +c=O has no real roots if and only if either of 

the following two conditions holds 

(a) b~O, c>O; 

(b) b<O and b2 -4ac<0. 

The Hurwitz stability of p;(.?,r) and pj(A,r) implies that a>O and c>O. 

This fact, together with Lemma 4.4.1, leads to the following theorem. 
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Theorem 4.4.3 Assume that the vertex quasi-polynomials Pi(A,T) and 

Pj(A,T) are robust Hurwitz stable for any TE[r., f]. Then the two-parameter 

family Py(A,T,p) is robust Hurwitz stable for TE[r., f] and pE[O, 1] if and only 

if either of the following conditions holds true for any TE[r., f] and liJ~O. 

(a) b~O. 

(b) b<O and b2 -4ac<0 . 

According to the definition of b=b(liJ,T) in Eq. (4.4.15), the coefficient b is a 

polynomial with respect to liJ, COSliJT and sinliJT. The leading coefficient with 

respect to liJ is positive and independent of COSliJT and SinliJT . It is easy to get a 

polynomial bo (liJ)( 5,b( liJ, T)) with positive leading coefficient by replacing COSliJT 

and sinliJT in b(liJ,T) with 1 or -1. Thus, it is possible to fmd out the maximal 

root liJo for polynomial bo(liJ) numerically. If liJ>liJo, then b=b(liJ,T)~bo(liJ»O. 

Thus, we only need to check the conditions of Theorem 4.4.3 on the rectangle 

[0, liJo]x[r., f] . From Theorem 4.4.3, the following theorem is obviously true. 

Theorem 4.4.4 Assume that the vertex quasi-polynomials Pi (A,T) and 

Pj(A,T) are robust Hurwitz stable for any TE[r., f]. If 

min b(liJ,T) ~ or max (b 2 -4ac) < 0, 
[O./lJo]x[r.rj [O./lJo]x[r.rj 

(4.4.16) 

the two-parameter family Pij(A,T,p) is robust Hurwitz stable for any TE[r., f] 
and pE[O, 1] . 

Suppose that b(ro,f)= min[o./lJo]x[r.T]b(liJ,T) , then we have 

8: b(liJ,T)I(m.f)=O and :T b(liJ,T)I(m.f)=O, (4.4.17) 

where 8bl8liJ and 8bl8T are the polynomials with respect to liJ, COSliJT and 

SinliJT. Using the Dixon's resultant elimination here again, we can find out the 

extreme points (ro,f) and the corresponding extreme values. It is easy to complete 

the same work for b2 -4ac . 

Once the extreme point of b( liJ, T) or b2 -4ac is in hand, we need to check the 

conditions in Theorem 4.4.3 only on the sub-regions near the extreme points rather 

than the whole rectangle [0, liJo]x[r., f] . This may greatly reduce the unnecessary 

computation. 

In practice, the robust stability test for the edge quasi-polynomials can be 

graphically completed as follows. 

Algorithm 4.4.1 

(a) Compute the coefficients a(liJ,T) , b(liJ,T) , C(liJ,T) and the polynomial 

bo (liJ) with maximal root liJo. 
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(b) Plot the graphs of b(m,r) =0 and b2 (m,r)-4a(m,r)c(m,r)=0 on the rectan­

gle [0, mo ]x[r, r] . These two graphs usually divide [0, mo ]x[r, r] into several 

sub-regions. 

(c) Check the stability. If there exist any sub-regions where conditions b~O 

and b2 -4ac~0 are true, then the edge family is not robust Hurwitz stable there. 

Otherwise, the edge family is robust Hurwitz stable. 

4.4.4 A sufficient and Necessary Condition 

In summary, the main result of this section can be stated as a sufficient and ne­

cessary condition that governs the robust Hurwitz stability of the entire family. 

Theorem 4.4.5 The family J] of quasi-polynomials is robust Hurwitz stable if 

and only if the following two conditions hold true. 

(a) For each vertex quasi-polynomial family Pk(A,r) , (i) the quasi-polynomial 

Pk (A,r) is Hurwitz stable and ~ is null; or (ii) ~ is not null, but the solution of 

Dixon's reduced linear equation from PSk is not compatible to PSk ; or (iii) Tk is 

null. 

(b) For each edge generated by Pi(A,r) and pj(A,r), the condition b~O or 

the condition b<O and b2 -4ac<0 holds true on the rectangle [0, mo ]x[r, r] . 

The test of robust Hurwitz stability on the basis of Theorem 4.4.5 requires testi­

fYing the Hurwitz stability of some fixed quasi-polynomials, some one-parameter 

quasi-polynomials and two-parameter quasi-polynomials only. Here, the stability 

test of any family of quasi-polynomials can be made by means of the Dixon's re­

sultant elimination for polynomial equations. In addition, the condition of Theo­

rem 4.4.5 gives a combined analytical and numerical procedure, which can be 

completed effectively by combining the Nyquist diagrams and the parametric 

plots. As a result, the robust Hurwitz stability for the non-polytopic family J] can 

be completed if the analytical procedures and numerical routines, or the Nyquist 

diagrams and the parametric plots, are implemented together. 

4.4.5 An Illustrative Example 

To demonstrate the proposed approach, the robust Hurwitz stability of a single­

degree-of-freedom system with two commensurate time delays in the state feed­

back is considered. The motion of the system is governed by 

x+0.05x+x=ux(t-2r)+0.5x(t-r) , (4.4.18) 
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or alternatively by the characteristic equation 

p(A,u,r)=A? +0.05A+l-ue-ZAr -0.5Ae-Ar =0. ( 4.4.l9) 

The robust Hurwitz stability is checked for a family II of quasi-polynomials 

II={p(A,u,r) I uE[0.375, 0.625], rE[0.675, 1.125]}. (4.4.20) 

The straightforward computation based on the proposed approach shows that 

the zero solution of the non-polytopic family is robust Hurwitz stable. For the sake 

of brevity, we only look at the graphic results, instead of the analytic and numeric 

procedures of test. 
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Fig. 4.4.3. The graph of b(W,T)=O 

Figure 4.4.1 shows that the quasi-polynomial p(A,0.5,0.9) is Hurwitz stable 

since the Nyquist diagram does not contain the origin of the complex plane. Figure 
4.4.2 indicates that the real and imaginary parts do not reach zero simultaneously 

on the rectangle [0, Wo ]x[.r, r], and then the two vertex quasi-polynomials 

p(A,0.375,r) and p(A,0.625,r) satisfy the inequalities p(iw,0.375, r)*O and 

p(iw,0.625,t')*0 respectively on the rectangle [0, wo]x[.r, r]. Thus, 

p(A,0.375,T) and p(A,0.625,r) are Hurwitz stable for any t'E [0.675, 1.125]. In 

Fig. 4.4.3, the graph of b(W,T)=O divides the corresponding rectangle 

[0, Wo ]x[.r, r] into two parts by, while b2 -4ac is negative and does not appear 
in Fig. 4.4.3. Therefore, Eq. (4.4.14) corresponding to Eq. (4.4.20) has no real root 

z . As a result, II is robust Hurwitz stable. 
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5 Effects of a Short Time Delay on System Dynamics 

In many controlled mechanical systems, the unavoidable time delays are much 

shorter than the shortest period of system vibration. If this is the case, the control­

lers are usually designed according to well-developed control strategies, say opti­

mal control, neglecting the time delays in the controllers and actuators. After the 

design, one may wonder whether the controlled system is still asymptotically sta­

ble if any short time delays appear in the feedback, whether the system stability is 

robust with respect to the small variation of feedback gains, and so forth. These 

questions have been answered in part in previous chapters when the system is of 

single degree of freedom. Nevertheless, tremendous computational efforts have to 

be made when the system dimension increases. To reduce the computational cost, 

hence, approximate approaches are preferable in practice. 

This chapter presents several approximate approaches to estimating the stability 

and the robust stability of linear systems with a short feedback time delay, respec­

tively. Then, it discuss the validity of the Taylor expansion of delay terms through 

the examples of both linear and nonlinear oscillators when they are equipped with 

the feedback involving a short time delay. 

5.1 Stability Estimation of High Dimensional Systems 

Consider a linear, time-invariant system of n degrees of freedom under the state 

feedback control with a bounded time delay O'.5.r'.5.p. The motion of the system 

yields 

Mx(t) + Cx(t) + Kx(t) = !(t)+Ux(t-r)+Vx(t-r) , (5.1.1) 

where xER n is the vector of displacement, M ERnxn , CERnxn, K ER nxn are the 

matrices of mass, damping and stiffness in the usual sense, U ERnxn and V ERnxn 

are the feedback gain matrices for the displacement and the velocity paths, re­

spectively. In general, these matrices, especially those of feedback gains, are not 

necessarily symmetric. In contrast to the Hamiltonian description, i.e., the state 

description, of controlled systems in most publications, the Lagrangian description 
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here will enable one to simplify computation and to gain an insight into the system 

dynamics as well. 

Let Cn denote the complex space of n dimensions. Substituting the candidate 

solution x(t)=ae At , where ..tEC! and aEcn, into Eq. (5.1.1) yields a transcen­

dental eigenvalue problem 

D(..t,r)a=O, (5.1.2) 

with 

(5.1.3) 

The system is asymptotically stable if and only if all the eigenvalues ofEq. (5.1.2) 

have negative real parts. 

Meanwhile, we have the adjoint eigenvalue problem ofEq. (5.1.2) 

(5.1.4) 

Hereinafter, the asterisk always represents the transpose and conjugate operator. 

Even though Eq. (5.1.4) does not offer any new information on the system dy­

namics, it will be helpful to simplify the algebraic manipulation later. 

5.1.1 Distribution of Eigenvalues Subject to a Short Time Delay 

The characteristic function corresponding to Eq. (5.1.2) reads 

D(..t,r)=detD(..t,r)=det[..t2 M +..tC+K _e--<T (U +..tV)]. (5.1.5) 

A controlled system is usually designed to be stable when the time delay in the 

state feedback vanishes. Henceforth, we assume that all the 2n roots of D(..t,O) 

have negative real parts throughout this section. 

Fig. 5.1.1 Existence region of the roots of D(A.;.) on the complex plane 
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As shown in Fig. 5.1.1, let BL <0 and BR<O be the smallest real part and the 

largest real part of these roots respectively, and B I >0 be the bound of all imagi­
nary parts of the roots in absolute value. Moreover, two bounds are defined for 

later use 

(5.1.6) 

where [; is a small positive number, that ensures the above inequalities. In what 

follows, we study the effect of a short time delay on the number and the distribu­

tion of the roots ofEq. (5.1.5) on the complex plane spanned. We shall show that 

Eq. (5.1.5) has only 2n roots near those of D(A,O) if the time delay is short 

enough. 

We first exclude the roots of Eq. (5.1.5) from the shaded region in Fig. 5.1.I. 

Equation (5.1.5) can be written as 

(5.1.7) 

where Pj,j=0,l •.. ,2n are the polynomials in terms of the entries of matrices M, 
C, K, U and V, as well as e-AT • It is easy to see that on the right half-plane 

Re(A»BL' the following inequality holds 

Ie-AT l=e-Re(A)T <e-BLP fi 0< < or _r_p. (5.1.8) 

Thus, Pj,j=0,l, ... ,2n are bounded in absolute value. This fact enables one to de­

fine two bounds 

B, =maxlp·1 for Re(A»BL, O::;r::;p, 
1~j::;;2n J 

There follows the inequality 

ID(;t, T lHp, IIA'· + p, A'~' ++ p,.I>lp, IIAI'· (1 J~II_·_I::: I l 
~lpoIBin(l- 2;:, »JPoIBin(l- 2~:1»0. 

(5.1.9) 

(5.1.10) 

(5.1.11) 

This inequality implies that none of the roots ofEq. (5.1.5) exists in the shaded re­

gion in Fig. 5.1.1 if O::;r::;p. 

Next, we analyze the possibility of the roots of D(A,r) falling into the right 

closed rectangle SR={A I BR::;Re(A)::;B2, Im(A)::;B2}. For this purpose, rewrite 

D(A,r) in SR as 
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D(A, r)=D(A,O)+Q(A, r), with Q(A,O)=O. (5.1.12) 

It is obvious that no root of D( ,.1,0) exists in the closed rectangle S R , thereby 

(5.1.13) 

From the continuity of D(A,r) with respect to r, there exists a small, positive 

number OR =o(c)<p such that 

(5.1.14) 

Consequently, we have 

(5.1.15) 

which excludes the roots of D(A,r) from the closed rectangle SR' 

Finally, we study the number of roots of D(A,r) in the left closed rectangular 

region SL={A I BL~Re(A)~BR' Im(A)~B2}' where D(A,r) can be written as Eq. 
(5.1.12) again. The definitions of bounds liL, liR and B2 ensure that there is no 

root of D(A,O) on the boundary r of the closed region SL' namely 

(5.1.16) 

Also from the continuity of D(A,r) with respect to r , there exists a small, posi­

tive number OL =o(c)<p such that 

(5.1.17) 

According to the Rouche's theorem in complex analysis, the number of roots of 

D(A,r) in the closed rectangle SL is the same as that of D(A,D) in SL provided 

that O~r<oL . The above analysis can be summarized as a useful theorem. 

Theorem 5.1.1 Given c>D, there exists a bound o(c)=min(oL(c),oR(c» for 

the time delay r such that D(A,r) continues to have 2n roots in the closed rec­

tangle SL if O<<<o(c) . However, the region of distribution ofthese roots on the 

complex plane may become slightly larger. 

Without loss of generality, we can assume that the roots with the largest real 

part are a pair of complex roots of D(A,D) and distinct from the other roots of 

D(A,D) . Let liL be greater than the second largest real part of the roots, we can 

similarly prove that D(A,r) has a pair of complex roots only in the narrow strip 

SL when O<<<o(c). In this case, the real part of this pair of complex roots is 

bounded within [li L ,li R]' We can therefore estimate the stability of the system 
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with delayed feedback simply from the variation of a single pair of roots of 

D(A,O), provided that the time delay is sufficiently short. This pair of roots will 
be referred to as "the most dangerous eigenvalues" hereafter for simplicity. 

5.1.2 Estimation of Eigenvalues 

Should there exist no time delay in the state feedback, Eqs. (5.1.2) and (5.1.4) 

would become a pair of adjoint, quadratic eigenvalue problems, the solutions of 

which yield 

{
D(Ar,O)ar =[A;M +Ar(C-V)+(K -U)]ar =0, 

(5.1.18) 
b;D(Ar,O) =b; [A;M +Ar (C-V)+(K -U)]=O, r=1,2, ... ,2n, 

where Ar ECI and An+r =~ ECI , r=1,2, ... ,n are n pairs of conjugate complex ei­

genvalues, ar ECn, ar+n =7ir ECn, br ECn and br+n =b,. ECn , r=1,2, ... ,n are the 

corresponding eigenvectors. Specifically, all the eigenvectors are scaled to 

(5.1.19) 

When the feedback control involves a short time delay, there exists an eigen­

value ir near the eigenvalue Ar. Similarly there is a corresponding eigenvector 

'iir near ar . In this subsection, we study how to determine 1,. and 'iir for a speci­

fic time delay .. when Ar and ar are given, whereas 

(5.1.20) 

(1) Approach based on truncated perturbation of an eigenvalue 

Substituting the first two equations in Eq. (5.1.20) into Eq. (5.1.2) and dropping 

the higher order terms of AAr, AArAar and so on., we have 

(5.1.21) 

where 

To solve Eq. (5.1.21) for AAr and Aar , we construct a set of linear equations in 

the unknown complex vector Pr 

(5.1.23) 
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Because 4r is not the eigenvalue ofEq. (5.l.2) when 00, the matrix D(4n r) in 

Eq. (5.l.23) is invertible. Besides, E(4n r)ar must be a non-zero vector. Other­

wise Eq. (5.l.21) implies that 4r is the eigenvalue ofEq. (5.l.2). The solution of 

Eq. (5.l.23) thus is a unique non-zero vector Pr. Comparing Eq. (5.l.23) with Eq. 

(5.l.21) yields 

(5.l.24) 

Namely, Pr is an eigenvector associated with the eigenvalue 1r ofEq. (5.l.2). 

Following the idea of the Rayleigh quotient, we have 

p;D(4r' r)Pr 

p;E(4r,r)Pr 

iir' E(4r' r)ar 
!\4r 

ii; E(4r' r)(ar +!\ar) 

!\4r!\4r 

There follows an explicit expression for !\4r 

!\4 r:::;p;D(4r,r)Pr p;[4;M +4rC+K _e-A,T (U +4rV)]Pr 

r p;E(4r,r)Pr p;{24rM+C+e-A,T[(U+4Y)r-V]}pr 
(5.l.26) 

Substituting Eqs. (5.l.26) and (5.l.24) into Eq. (5.l.21), we have the new eigen­

value and the eigenvector. 

(2) Simplified approach based on truncation of a vety short time delay 

If the time delay r is so short that the delay phase 14rrl«1, we can write the 
matrices D(4n r) and E(4n r) as a truncated Taylor expansion at 4r with respect 

to 4r r and then have 

{
D(4r ,r)r:::;D(4r ,0)+4r r(U +4Y), 

E(4r ,r)r:::;E(4r ,0)=-(24rM +C -V). 

Substituting Eq. (5.l.27) into Eq. (5.l.21) yields 

D(4r ,O)!\ar +4r r(U +4y)ar -!\4rE(4r ,0 Jar =0. 

(5.l.27) 

(5.l.28) 

Premultiplying Eq. (5.l.28) by the left eigenvector b; associated with eigenvalue 

4r , we have 

(5.l.29) 

As proved in Subsection 5.l.4, ar and b; satisfy 
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Therefore, the simplified explicit expression for dAr reads 

dAr Arb;(U+ArV)ar T 
b;E(Ar,O)ar 

Arb; (U+ArV)ar T. 
b; (2ArM +C -V)ar 

(5.1.30) 

(5.1.31) 

It is easy to verify that Eq. (5.1.31) is identical to the result obtained by the first 

order perturbation with respect to the small parameter T • 

From Eq. (5.1.31), the sensitivity of the eigenvalue module with respect to the 
time delay can be defined as 

Then, the following two limits hold true 

r (A) I b;Uar I ,t~~,u r = b;(C-V)ar ' 

(5.1.32) 

(5.1.33) 

It is worth noting that the sensitivity is independent of the system stiffuess matrix 

K. Keeping these relations in mind, we can estimate the relative change of the ei­
genvalues owing to a very short time delay. 

(3) Discussions 

Presented above are two forms of the new approach for estimating an eigenvalue 
of the system with delayed feedback. The difference between these forms is the 
truncation of higher order terms, which consequently effect accuracy and compu­

tational effort. If the time delay is so short that IArTI«1 holds, Eq. (5.1.31) 
provides an accurate and efficient estimate. If this inequality does not hold, yet 

IA Ar I/lAr I is still a small quantity, the eigenvalue can be estimated from Eq. 
(5.1.26), where the eigenvector Pr has to be determined from a set of n­

dimensional, complex, linear equations in advance. 

Even though Ar is denoted as the eigenvalue of the delay-free system, none of 

the eigenvalue properties of the delay-free system are used during the analysis. 

Thus, Ar can be taken as an initial estimate of the eigenvalue of the delay system 

and repeatedly use Eq. (5.1.26) as a Newton-Raphson iteration if IAAri/iArl is not 
small. If the time delay T is considered as a parameter, Eq. (5.1.26) can repeat­

edly be used as a continuation technique to trace the variation of an eigenvalue 
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with increase in time delay r . This is the third form of the present approach to the 

case of long time delay and will be demonstrated in the next subsection. 

In addition, it is interesting to apply these estimates to an underdamped, single­

degree-of-freedom system with delayed feedback. Now Eq. (S.1.26) reads 

Aim+A,c+k-e-.<,T (u+A, v)] 

2A,m+c+e-.<,T[(u+A,v)r-v] , 
(S.1.34) 

where m, c, k, u and v are the scalar parameters corresponding to the matrices in 

Eq. (S.U), and 

v-c .~4m(k-u)-(c-v)2 
Al =--+1--'....-------

2m 2m 

Similarly, Eq. (S.1.31) in this case becomes 

Substituting Eq. (S.1.34) into Eq. (S.1.3S) yields 

mu+v 2 -cv 
2 r. 

2m 

(S.1.3S) 

(S.1.36) 

(S.1.37) 

It is worthy to note again that the variation of the real part of the eigenvalue is 

independent of the system stiffness. 

5.1.3 Illustrative Examples 

(1) A 2-DOF system with delayed state feedback 

Fig. 5.1.2. A dual-mass system under the state feedback with equal time delays 
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To demonstrate the merits of the above approaches, consider the stability of the 
steady-state motion of a dual-mass system with a delayed feedback as shown in 
Fig. 5.1.2. The motion of the system yields Eq. (5.1.1), where 

M=[~ ~J. c=[ 0.2 -0.1], 
-0.1 0.1 

K=[k+l -1] 
-1 l' 

(5.1.38) 

whereas the stiffness coefficient k and the feedback gain matrices U and V will 

be variously specified in different case studies. As a base comparison, the eigen­
values for a given time delay T in each case were first determined from the inter­

sections of the curves Re[D(A"T)]=O and Im[D(A"T)]=O plotted numerically on 

the complex plane of A, by using MAPLE. These eigenvalues are taken as the ex­

act numerical results in what follows. For the sake of simplicity, the terms ST, DT 

and NR will be used hereafter for the approach based on Single Truncation of ei­

genvalues, the approach based on Double Truncations of both eigenvalues and the 

time delay, and the Newton-Raphson iteration on the basis of ST, respectively. 

Also, Tr will be used to denote the shortest time delay when the r-th order mode 

of the delay-free system goes unstable, and referred to as the r-th critical time de­
lay for short. 

Case 1 As the first and the simplest case, a state feedback was introduced to the 
system from the right mass to the connection only, so that 

k=2.0, U=[O.O 1.0], 
0.0 -1.0 

V=[O.O 0.1]. 
0.0 -0.1 

(5.1.39) 

The variation of the real and imaginary parts of two eigenvalues with an increase 
of time delay T is shown in Fig. 5.1.3, where the real parts of two pairs of conju­
gate eigenvalues vanished when the time delay arrived at the critical values 
T1 ",0.396 and T2 ",0.418, respectively. The results ofNR in Fig. 5.1.3 were iden­
tical to the exact results represented by circles. Both ST and DT gave good esti­

mates of T r • The relative errors were -0.1 % and 1.5% for the first pair of conju­

gate eigenvalues, and 3.1% and -0.96% for the second, respectively. As DT 

provides a linear relationship between an eigenvalue and the time delay, the esti­

mation error, especially that of the second pair of conjugate eigenvalues, became 

unacceptable when the time delay was longer. 

Shown in Fig. 5.1.4 are the curves of Re[D(A"T)]=O and Im[D(A"T)]=O on the 

upper half-plane for two specific time delays T=O.1 and T=2.5, corresponding to 

a stable status and an unstable status of the system, respectively. Each intersection 

point of these curves indicates an eigenvalue ofEq. (5.1.2) on the complex plane. 
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The new eigenvalues emerged in the figure only when the time delay was long 

enough. It is this fact that makes it possible to analyze the system stability ac­
cording to the evolution of eigenvalues of the delay-free system. 

0.1 0.2 , , a. b. , , , 
0.1 , , 

-0.1 

-0.1 
0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0 

0.80 2.0 

a. b. 
0.78 1.9 

--------
0.76 1.8 

ImA 
-.....;::;; 

0.74 1.7 

0.72 1.6 

0.70 1.5 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

T T 

Fig. 5.1.3. Variation of the eigenvalues with an increase of time delay in Case 1; a. The 
first eigenvalue, b. The second eigenvalue; Key: -0- NR, - ST, --- DT 

5r-------r=========~ 
a. --Re[D(l, T»)=O 

4 ----- Im[D(l,T))=O 

----
,-

o~--~~--~----~--~ 
-1.0 -0.5 0.0 0.5 1.0 

ReA 

5~----~~======~ 
b. 

4 

3 
IrnA 

2 
--- ---

1 _____________ -' 

--Re[D(l,T»)=O 

----- Im[D(l,T»)=O 

o~ __ ~ ___ ~_W __ ~ __ ~ 

-1.0 -0.5 0.0 0.5 1.0 
ReA 

Fig. 5.1.4. Distribution of eigenvalues ofEq. (5.1.3) in Case 1; a. 1'=0.1, b. 1'=2.5 

Case 2 The type of feedback was kept the same as that in Case 1 and only the 

velocity feedback gains were increased from ±O.l in Case 1 to ±1.0 here. That is, 
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k=2.0, U =[0.0 1.0 ], V =[0.0 1.0 ] . 
0.0 -1.0 0.0 -1.0 

(5.1.40) 

The negative velocity feedback reduced the real part of the eigenvalues of the de­

lay-free system, and hence increased the critical time delays. Intuitively speaking, 

it would appear more difficult to estimate eigenvalues in this case. In Fig. 5.1.5 are 

shown the variations of the real and imaginary parts of the two pairs of conjugate 

eigenvalues with increase in time delay, which reached the critical values respec­

tivelyat T1 =1.135 and T2 =0.644, much longer than those in Case 1. Here again 

the results ofNR were the same as the exact results. As shown in Fig. 5.1.5, both 

ST and DT offered good estimations of the critical time delay T1 with relative er­

rors of -1.76% and 0.44%, respectively. For the estimation of the second critical 

time delay T 2 , ST gave an under-estimation T 2 =0.51 . However, DT totally failed 

because of the non-monotonic trend of Re~ with an increase of the time delay. 

In this case, NR is the more appealing approach even though it required a few it­

erations. It is important to note that even though ~ was the "most dangerous ei­

genvalue" when the system did not involve time delay, Re~ became positive 

earlier than Re~ when the time delay increased. Hence, the "most dangerous ei­

genvalue" can change for a sufficiently long time delay. 

0.10.----------------, 1.0,----------------, 
a. b. 

0.05 0.5 

ReA 0.00 f----------,.~---___1 

-0.05 

-0.1O'--~---'-~---'--~----'-~-' -1.0 L-~--'-_~__'_~_L_~___' 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

0.9 3.0 .---------~--____, 
a. b. 

2.5 ---
ImA 0.8 ---

o. 7 '--~__'__~__'_~_.l...._~___' 1.0 '--~__'__~__'_~_.l...._~___' 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 

T 

1.0 
T 

1.5 2.0 

Fig. 5.1.5. Variation of the eigenvalues with an increase of time delay in Case 2; a. The 
first eigenvalue, b. The second eigenvalue; Key: -0- NR, - ST, --- DT 
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Case 3 To test the efficacy of the approach, the system was intentionally des­

igned to be more complicated by introducing a stronger displacement feedback 

from both masses, namely 

k-2.0, u- , v- . _ _[-2.0 3.0] _[0.0 1.0] 
0.0 -3.0 0.0 -1.0 

(5.1.41) 

As shown in Fig. 5.1.6, the real parts of the first and the second eigenvalues van­

ished at 1"1 =0.139 and 1"2 =0.298, respectively. Both ST and DT again gave good 

estimations for the critical time delay 1"1 with relative errors of -0.07% and 0.94%, 
respectively. For more difficult estimation of the second critical time delay 1"2' the 

relative errors ofST and DT were -6.7% and 76%, respectively. 

1.0..--------------, 
b. 

-0.5 -1.0 L-~_'_:_~,_'__:_~:_'_:_~.,....".~..,.., 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

2.0..--------------, 3.5 .------------~___, 
8. b. 

3.0 

ImA. 1.5 2.5 

2.0 

1.0 1.5 '--~_'_:_~,_'__:_~..J._~_'__~__' 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

T T 

Fig. 5.1.6. Variation of the eigenvalues with an increase of time delay in Case 3; a. The 
first eigenvalue, b. The second eigenvalue; Key: -0- NR, - ST, --- DT 

Case 4 Compared with Case 3, the system was rendered even more complicat­

ed by adding the velocity feedback from the left mass to itself, i.e., 

k-2.0, U- , v- . _ _[-2.0 3.0] _[-1.0 1.0 ] 
0.0 -3.0 0.0 -1.0 

(5.1.42) 
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As shown in Fig. 5.1.7, even though DT failed to estimate accurately the critical 

time delays for either eigenvalue in this case, both NR and ST worked success­

fully. For the two critical time delays '1 =0.383 and '2 =0.365, the relative errors 
of ST were respectively 9.1 % and 13.8%. Here again the real part of the "nomi­

nally less dangerous" eigenvalue Az of the delay-free system became positive a 

little bit earlier than that of the "most dangerous" one when the time delay in­

creased. 

0.5,----------------, 1.0,----------------, 
b. 

-0.5 -1.0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

2.0 4.0 

a. 3.5 b. 
1.8 

3.0 
1.6 

IrnA. 

1.5 

1.0 
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

r r 

Fig. 5.1.7. Variation of the eigenvalues with an increase of time delay in Case 4; a. The 
first eigenvalue, b. The second eigenvalue; Key: -0- NR, - ST, --- DT 

Case 5 In the final case, the right spring in the system was replaced with an ex­

tremely stiff one, while the state feedback was kept the same as that in Case 3, 

namely 

[
-2.0 

k=399.0 U= 
, 0.0 

3.0], v=[O'O 1.0]. 
-3.0 0.0 -1.0 

(5.1.43) 

Figure 5.1.8 shows that the first mode of the system became unstable when the 

time delay reached '1 =0.316, whereas the second mode remained stable no matter 

how long the time delay became. Not surprisingly, ST predicted the oscillation of 

the second eigenvalue with respect to the time delay as accurately as NR did, but 
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DT gave a totally wrong prediction. This example demonstrates again the premise 

that ST and DT work well only within the ranges ILlAr/ Arl«l and 1.-\.1«1, re­
spectively. 

1.0 1.0 
a. b. 

0.5 0.5 

ReA 0.0 

-0.5 -0.5 

-1.0 -1.0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

3.0 20.5 
a. b. 

2.5 

ImA 

1.0 19.5 '--~.L..-~...I..-~--'--~---'---~--' 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 5.1.S. Variation of the eigenvalues with an increase of time delay in Case 5; a. The 
first eigenvalue, b. The second eigenvalue; Key: -0- NR, - ST, --- DT 

(2) A 10-DOF system with delayed velocity feedback 

In order to demonstrate the applicability of the new approach to the stability esti­

mation of high dimensional systems with delayed feedback, a numerical study was 

made on an undamped chain system of lO degrees of freedom as shown in Fig. 

5.1.9, where 

mr =1.0, kr =1.0, r=I,2, ... ,10 . (5.1.44) 

To increase the damping of the system artificially, one channel of velocity feed­

back was introduced with the feedback gain VII =-1.0. 

If there was no time delay in the feedback, the 1 ° pairs of conjugate eigenval­
ues of system could be solved by using any commercially available codes for ei­

genvalue problems. The real parts and the imaginary parts of these eigenvalues are 
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listed in Table 5.1.1 according to the absolute value of their imaginary parts, from 

the minimum to the maximum. In this case, the dangerous eigenvalue was A,. 

Fig.5.1.9. A lO-DOF system with a delayed velocity feedback 

Table 5.1.1. Real and imaginary parts of eigenvalues of the delay free system and 
corresponding critical time delays 

r ReAr ImAr 'fr 

-0.0021 0.1497 10.375 

2 -0.0165 0.4506 3.425 

3 -0.0383 0.7500 2.064 

4 -0.0660 1.0416 1.501 

5 -0.2136 1.3013 0.732 

6 -0.0877 1.3555 1.201 

7 -0.0431 1.5927 1.023 

8 -0.0215 1.7688 0.909 

9 -0.0089 1.8964 0.839 

10 -0.0022 1.9740 0.799 

When the feedback had a time delay in the feedback, the stability analysis of 

the high dimensional system became very complicated. For example, the numeri­

cal approaches proposed in (Su et al. 1994) and (Chen 1995) involve very lengthy 

algebraic manipulations including the decomposition of singular values and so 

forth. However, the new approach written in a few lines of FORTRAN and incor­

porated with standard subroutines of linear algebra completed the analysis within 

a few seconds on a PC of Pentium-III. The critical time delays for all pairs of ei­

genvalues determined by NR are listed as the last column in Table 5.1.1. 

Intuitively speaking, the higher a natural frequency, the shorter the critical time 

delay. So, it was expected that the most dangerous eigenvalue" should be AIO with 

an increase of time delay since the real part of A,o was the second smallest when 

there was no time delay in the feedback. Nevertheless, the most safe eigenvalue" 
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As became dangerous fIrst with an increase of time delay, and its real part van­

ished at 1"5 =0.732 . Figure 5.1.1 0 shows the evolution of eigenvalues As and AlO 
with increase of the time delay. This example indicates that care must be taken 

when the feedback of a high dimensional system involves any time delay. 

1.0,--------------., 0.02,------------, 
a. b. 

0.5 0.01 

Re.? f-------.f'=-------J 0.00 f--------:~-------'-==4' 
- .. _-

-0.01 --- .. 

-1.0 '-::-~--:-'-::_~:_'_:_~---'-'':_~-=-' -0.02 '-::-~--:-'-::_-:_'_:_~-:-'.,.._~_=_' 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

3.0 2.00.-----------, 
a. b. 

2.5 h>-- ..;;.;;0: - - - - ;:o;-<'"-""'~-_~_":<> __ -<>_-0_ -0 __ "1 
~ 

1m.? 1.95 

1.0 1.90 '-::-~--:-'-::_----::_'_:_~-:-'_=___~_=_' 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 

T 

Fig. 5.1.10. Variation of two eigenvalues with an increase of time delay; a. As, b. ~o; 
Key: -0-, NR, - ST, --- DT. 

In summary, the stability of a linear n-degree-of-freedom system with a single 

feedback time delay is governed by the evolution of the 2n eigenvalues of the de­

lay-free system with increase in the time delay, provided that the time delay in the 

state feedback is sufficiently short. To study the stability of the system involving 

feedback time delay, a perturbation approach is proposed so as to estimate effi­

ciently the evolution of these eigenvalues. The approach can be used in three 

forms according to the length of time delay. If the time delay 1" is so short that the 

eigenvalue Ar of concern yields 1A,.1"1«1 , the simplest form of the approach gives 

an expression, similar to the Rayleigh quotient, for the variation of Ar proportion­

al to 1". When the time delay is not so short, two alternative forms of the approach 

enable one to trace the variation of Ar by solving a set of linear algebraic equa­

tions or by using Newton-Raphson iteration. The later form gives the exact nu­

merical evolution of the eigenvalues with increase of time delay. 
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Worthy of mention finally is that it is straightforward to generalize the analysis 

and the assertions here for the following n-degree-of-freedom system with asyn­
chronous time delays in different feedback channels 

n n 

L[mijx/t)+cijx/t)+kijxj(t)]= I/t)+ L[UijX/t-Tij)+VijXj(t-l]ij)] . (5.1.45) 
j=l j=l 

As the truncation in Eq. (5.1.21) requires only the small variation of eigenvalues 

due to the time delay, the approach described here can be directly used to analyze 

the stability of this kind of system also. However, much more computational ef­

forts are required in tracing the evolution of eigenvalues if a system involves 

many different time delays as in Eq. (5.1.45). 

5.1.4 A Relation of Orthogonality of Mode Shapes 

This subsection is an appendix for Subsection 5.1.2, presenting the proof of Eq. 

(5.1.30). Consider the following equation of the r-th eigenvalue and its eigenvec­

tor in the state space 

(5.1.46) 

Comparing this equation with the first one in Eq. (5.1.18), we can readily find 

The adjoint relation ofEq. (5.1.46) reads 

V;(A-AJ)=[V;l V;2]([ _:-lK _:-lC ]-AJ)=O, 

whereby we obtain 

{
A;V;2 +ArV;2M-1C+V:2M-1K =0, 

v:1 =v:2 (Ar +M-1C). 

(5.1.47) 

(5.1.48) 

(5.1.49) 

From the comparison ofthe first equation in Eq. (5.1.48) with the second equation 

in Eq. (5.1.18), we have 

(5.1.50) 

Noting the orthogonality relation of adjoint eigenvectors 

(5.1.51) 
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and substituting Eqs. (5.1.47) and (5.1.50) into Eq. (5.1.51), we obtain 

2A.rb; Mar +b; (C -V)ar ;to. 
This completes the proof ofEq. (5.1.30). 

5.2 Stability Test Based on the Pade Approximation 

(5.1.52) 

In this section, the Pade approximation, instead of the truncated Taylor expansion, 

is used to simplify the delayed dynamic systems to those described by the ordinary 

differential equation with its orders increased. The primary reason of using the 

Pade approximation comes from its higher accuracy and numerical stability, see, 

for example, (Xu 1990). To make the exposition as simple as possible, the study 

will be confined to a linear, single-degree-of-freedom system with two time delays 

in the feedback paths of both displacement and velocity, though the extension to 

higher dimensional systems is quite straightforward. 

The dynamic equation of system of concern is 

mi(t)+cx(t)+kx(t)=ux(t-t"J )+v.x(t-t"z)+ /(t) , (5.2.1) 

where m>O, c~O and k~O are the coefficients of mass, damping and stiffness, 
u and v the feedback gains, t"J~O and t"z~O the time delays, /(t) the external 

excitation, respectively. The characteristic function ofEq. (5.2.1) reads 

(5.2.2) 

As analyzed in Section 3.1, Eq. (5.2.1) is asymptotically stable if and only if all 

the roots ofEq. (5.2.2) have negative real parts. 

The inequality u <k is assumed to hold hereinafter because the system free of 

time delay is asymptotically stable only when u<k. Otherwise, we have 

D(O,t"J,t"z)=k-u~O and D(+oo,t"J,t"z)-HOO so that Eq. (5.2.2) has at least one 

characteristic root with non-negative real part. 

5.2.1 Test of Stability 

Equation (5.2.2) includes two exponential functions in unknown A. and this fact 

gives rise to a great difficulty in the stability analysis. If they are replaced with any 

algebraic approximations, the stability analysis ofEq. (5.2.1) can be simplified. In 
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what follows, the Pade approximation will be used first in the case of equal time 

delays, and then in the case of unequal time delays. 

(1) The case of equal time delays 

To get an accurate approximation of Eq. (S.2.2) in the case of '1 ='2 =, , the Pade 

(4, 4) approximation, see (Xu 1990), is chosen for the exponential function eY as 

following 

with y=-,1,. The error of this approximation is estimated by 

Y 1680+840y+180y2+20y3+y4 (4!)2 9 O( 10) 
e y + y , 

1680-840 y+ 180 y2 _ 20 y3 + Y 4 8!9! 

It is about 3.9376 xlO-8 when IYI= 1. It increases to 2.01S6 xlO-s 

When IYI= 3, the error reaches 7.7487 X 10-4 • 

By means ofEq. (S.2.3), Eq. (S.2.2) can be approximated as 

where 

a4 =1680m+840(c+v)r+180(k-u),2, 

as=1680(c-v)+840(k+u)" a6 =1680(k-u). 

(S.2.3) 

(S.2.4) 

while IYI= 2. 

(S.2.S) 

(S.2.6) 

When the time delay is sufficiently short, the approximate characteristic function 

in Eq. (S.2.S) is in very good agreement with the original characteristic function in 

Eq. (S.2.2) within a certain range, say, 1,1,1:::;3. 

To confirm the assertion about the agreement, we study the asymptotically sta­

ble region of the delayed dynamic systems on the plane spanned by the feedback 

gains (u,v). In general, the stability boundary, defined by D(im",,)=O, between 

the stable and unstable regions on the plane of (u,v) for a given time delay may 

look very complicated. As shown in Subsection 3.S.1, the stability boundary may 

intersect with itself even many circles if the time delay is sufficiently long. Yet, 
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what we are concern with is the bounded, connected asymptotically stable region 

containing the origin (0,0) on the plane of (u,v) as shown in Fig. 5.2.1, where 

the curve is the marginal stability condition D(im,T, T)=O and the vertical line is 

the marginal stability condition u=k of the system without time delay. Such an 

asymptotically stable region exists provided that the time delay is short enough, 

say, shorter than the natural period of the system without time delay. In this case, 

D(im,T,T) gives a very good approximation to the marginal stability boundary of 

the original characteristic function. 

v 

u 

c 
Fig. 5.2.1. Stable region on the plane of (u,v) in the case of equal time delays 

From the conditions D(im,T,T)=O and D(im,T,T)=O for marginal stability, it is 

easy to get the feedback gains of the original system on the stability boundary 

{
U=(k -mm2 )cosmT-cmsinmT, 

v= ~ [(k-mm 2 )sinmT+cmcosmT], 

and those of the approximate system on its stability boundary 

where 

A P U=-, 
r 

A q 
v=-, 

r 

- 2822400cm2T-2822400mm2 + 2822400k, 

(5.2.7) 

(5.2.8) 
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q=-2822400mah·-1310400cah·2-369600kah·3 

+369600mOJ4 zo3+2822400c+2822400kzo+69360cOJ4 zo 4 

(S.2.9) 

For a system with given m, c, k and zo, it is easy to find numerically the value 6J' , 
corresponding to the point C in Fig. S.2.1 when the stability boundary of the ap­

proximate system first intersects with u=k on the half-plane v<O. In the follow­

ing, we give an estimation of 6J * first. 

Let g=p-kr, then we defme 

gl =glmT=1 =-lS80601mOJ2 -2461640cOJ-1344800k , 

g2 =glmT=2 =13S7824mOJ2 -2967040cOJ-4620800k , 

g3 =gl mT=3 =3900S19mOJ2 -SS8360cOJ-7840800k . 

(S.2.lOa) 

(S.2.10b) 

(S.2.lOc) 

Equation (S.2.10a) implies that the stability boundary on the plane of (u,v) can 

not intersect with u=k when OJzo=l since gl =0 has no positive solution OJ. 
Solving g2 =0 for OJ gives 

1483S20c+~ (1483S20c)2 + 13S7824x4620800mk 
OJ2 1357824m . (S.2. 11 a) 

If 0<zo<2fOJ2 , then g2 >0. In this case, the stability boundary defmitely intersects 

with u=k for some OJzoE(l, 2), and there exists 6J* E(1IT, 2IT). Similarly, from 

Eq. (S.2.10c), we get the unique positive root of g3 =0 

279180c+~(279180c)2+3900S19x7840800mk 
OJ3 3900S19m . 

(S.2.lIb) 

For all 0<zo<3fOJ3, therefore, we have g3>0. It follows that the stability 

boundary intersects with u=k for certain OJzoE(I, 3), and consequently, there 

exists 6J' E(1fr-, 3fzo). For the original system, a similar value OJ' can also be 

found numerically. It is known that OJ * ~ 6J' , and that 6J * is almost the same as 

OJ* . Some numerical examples about OJ* are given in Table S.2.1. 
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Table 5.2.1. A number of examples for determining ll)' 

System parameters 2/ ll)2 3/ ll)3 Intersection tests 

m=1.0, c=0.02, k=1.0 1.071 2.113 T =0.65, ll)' =2.68, ll)' T = 1. 74 

m=1.0, c=1.50, k=1.0 0.487 1.962 T =0.65, ll)' =3.28, ll)' T =2.13 

m=1.0, c=2.00, k=1.0 0.396 1.913 T =0.65, ll)' =3.42, ll)' T =2.22 

m=1.0, c=5.00, k=1.0 0.178 1.648 T =0.65, ll)' =3.92, ll)' T =2.55 

m=1.0, c=20.0, k=1.0 0.045 0.871 T =0.65, ll)' =4.52, ll)' T =2.94 

0.0006 a. 0.0006 b. 

rIl 0.0004 rIl 0.0004 ... ... 
0 0 ... !:: ... 
"'" "'" 0.0002 0.0002 

0.0000 0.0000 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
aJ aJ 

0.00100 c. 0.00020 
d. 

0.00075 0.00015 
rIl rIl ... ... 
~ 0.00050 ~ 0.00010 

"'" "'" 0.00025 0.00005 

0.00000 0.00000 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 3 4 5 6 
aJ aJ 

Fig. 5.2.2. Errors of approximation with an increase of frequency; a. c= 1.5, T =0.65 and 
ll)' =3.277, h. c=2, T =0.65 and ll)' =3.415, c. c=5, T =0.65 and ll)' =3.923, d. c=1.5, 
T =0.3 and ll)' =6.143 

To measure the difference between the asymptotically stable regions of the ap­

proximate system and the original system, two errors are defmed as 

~u=u-u, ~v=v-v. (5.2.12) 
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Once the value w * or w * corresponding to the point C on the stability boundary 

is obtained, the approximate error curves of {(w,Llu) I O:;:;;w:;:;;w*} and 
{( w,Llv) I 0:;:;; w:;:;; w *} can easily be figured out. 

Figures 5.2.2a, 5.2.2b and 5.2.2c show the errors in three typical cases corre­

sponding to an under-damped system, a critically damped system and an over­

damped system. An additional example in Fig. 5.2.2d shows the effect of time 

delays on the under-damped system. Without loss of generality, the parameters m 

and k in these examples are set to be one. Otherwise, they can be scaled to be one 

by using dimensionless time and new parameters. 

The above numerical examples show that the Pade approximation of the char­

acteristic function gives excellent accuracy so that the stability boundary and the 

asymptotically stable region of the approximate system are almost the same as 

those of the original system within the concerned scopes. The errors of approxi­

mation are considerably small and come mainly from the approximation of u , and 

u<u when w varies from some w+ to w * with small w * -w+:2:0. This fact 

means that a dangerous case may happen only when the system is designed to pos­

sess a very small negative value v-v(w*) and a very small positive value k-u. 

To avoid such a danger, v should be increased alternatively to a little bit larger 

value in design. 

According to the Routh-Hurwitz criterion, all the roots of D(A,.,.) have nega­

tive real parts if and only if 

2 a[a2a3a4 +2aOa[a4aS +aOa2a3aS +a[ a2a6 
2 2 2 2 2 2 -aOa[a3a6 -at a4 -ao as -aOa4a3 -a[a2 as >0; 

2 2 2 a[a2a3a4aS +2a[ a2aSa6 +a[ a3a4a6 +2aOa[a4aS 
2 3 222 +aOa2a3aS +aOa3 a6 -a[a2a3 a6 -a)a2 as 

22 32 2 23 
-a) a4 as-a) a6 -3aOa)a3aSa6-aOa3 a4aS-aO as >0. 

(5.2.13a) 

(5.2.13b) 

(5.2.13c) 

(5.2.13d) 

For given system parameters m, c, k and ., all the combinations of (u,v) subject 

to Eq. (5.2.13) give the stable region, which looks like that in Fig. 5.2.1, of the ap­

proximate system. 

On the basis of the above analysis, a simple stability test approach is estab­

lished for the dynamic system with short time delays as follows. 
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Algorithm 5.2.1 
(a) Test the stability of the approximate system by using Eq. (S.2.13). 

(b) If the approximate system is unstable, the approach fails. Otherwise, the 

original system is stable for T<min(3IOJ3,.Jklm). 

(2) The case of unequal time delays 

If the time delays are distinct, the feedback gains on the stability boundary yield 

{
u 1 [(k-mOJ 2)cos(OJT2)-cOJsin(OJT2)], 

COS(OJT2 -OJT\) 

V= 1 [(k-mOJ 2 )sin(OJT\ )+cOJCOS(OJT\ )], 
OJCOS(OJT2 -OJT\) 

(S.2.14) 

which depicts a more complicated curve on the plane of (u,v) than that in the case 

of equal time delays. However, the system has an asymptotically stable region 

similar to that in Fig. S.2.1 ifboth T\ and IT\-T2 1 are small enough. In this case, 
the Pade (4, 4) approximation is not appropriate since it results in a very small co­

efficient O( T\4 T 24 ) of the leading term in the characteristic equation of approxi­

mate system. To avoid this trouble, some lower order Pade approximations, say, 

(3, 2) or (2, 2) approximations, are more preferable. The Pade (3, 2) and (2, 2) ap­
proximations to e, see (Xu 1990), are respectively as following 

eY 60+ 36 y+9 y2 + y3 2!3! 6 +O( 7) 

60-24y+3y2 S!6!y y, 
(S.2.1S) 

Y 12+6y+ y2 (2!)2 5 O( 6) 
e y + y . 

12-6y+y2 4!S! 
(S.2.16) 

If the functions e-AT1 and e-M2 in Eq. (S.2.2) are approximated by using Eqs. 

(S.2.1S) and (S.2.16), Eq. (S.2.2) can be approximated as 

where 

b2 =36mT\2 +60mT2 2 +144mT\T2 +(3k-9U)T\2T2 2 

+18(c+V)T\2T2 +24(c-V)T\T2 2 +6UT{T2' 

(S.2.17) 
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2 2 
b3 =288m'j+360m'2+(24k+36U)'j'2 +(18k-54U)'j '2 

+(c-v)(36'j2 +60'22 )+144(c+V)'j '2 + 12u,~, 

b4 =720m+288(c-v)'j +360(c+v)'2 +(144k+216u)'j'2 

+(36k-108u),~ +60(k-u),;, 

b5 =(288k+432u)'j +360(k-u)'2 + 720(c-v), b6 =720(k-u). (5.2.18) 

The stability test can be made for the approximate system by using Eq. (5.2.13). 

With the same argument, we can numerically find the value ()) * of a given sys­

tem for small distinct time delays 'j *'2 with l'j-'21«I. Usually, such an value 
()) * is almost the same as that of the corresponding system with '2 being the time 

delays in both displacement and velocity feedback paths. The accuracy of ap­

proximations in Eqs. (5.2.15) and (5.2.16) is not so good as that of Eq. (5.2.4) 

used in the case of equal time delays, still, the connected bounded stable region of 

the approximate system is in good agreement with that of the original systems. 

2 a. 2 b. 

v 0 

-2 v 0 

-4 
-2 

-6 Stable region 

-8 -4 

-10 C 

-30 -25 -20 -15 -10 -5 01 
-6 

-8 -6 -4 -2 0 
u u 

2 c. 2 
v 0 

v 0 
-2 

-4 -2 

-6 -4 

-8 
Stable region 

-6 
-10 

-12 C 
-8 

-50 -40 -30 -20 -10 01 -20 -15 -10 -5 01 
u u 

Fig. 5.2.3. Asymptotically Stable regions at different damping and time delays; a. c=1.5, 
'I =0.15 and " =0.18, b. c= 1.5, 'I =0.50 and " =0.45, c. c=2.5, 'I =0.18 and ,,=0.15, d. 
c=2.5, 'I =0.45 and " =0.50; Key: - accurate, -0- approximate 
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Figure 5.2.3 illustrates four case studies where the parameters were set to be 

m =1 and k =1. If 1"1-"21 is not small, the stable region may be successfully ob­
tained as shown in Fig. 5.2.4. However, it is not always the case. Like the case of 

equal time delays, on the stability boundary within the scopes of concern, the ve­
locity gain of the approximate system is almost equal to that of the original sys­

tem, the main approximate error still comes from u . A dangerous case may occur 

when the feedback gains are chosen as the values in the lower-right comer of the 

stable region of the approximate system. This case can be avoided by choosing 

alternatively a little bit larger value of the velocity feedback gain. 

2 a. b. 
2 

v 0 
v 0 

-2 
Stable region -2 

-4 C 

-8 -6 -4 -2 0 
-4 

-6 -4 -2 0 
u u 

Fig. 5.2.4. Asymptotically stable regions when 1'1-'21 is not small; a. c=1.5, 'I =0.75, and 
'2 =0.50, b. c=1.5, 'I =0.35 and '2 =0.70; Key: - accurate, -0- approximate 

5.2.2 Test of Interval Stability 

In this subsection, the idea of the Pade approximation is extended to checking the 
interval stability of Eq. (5.2.1) with help of well-known Kharitonov theorem in 

(Kharitonov 1979). The analysis begins with the case of equal time delays 

"I ="2 =". Assume that the system parameters fall into the corresponding interval 
as following 

and define 

O<!!!.s;,ms;,m, Os;,fs;,Cs;,C, Os;,!i.s;,ks;,k, 

!!.s;,us;,u, ~s;,vs;,v, Os;,rs;,,,s;,f, 

- = { I < <- < <- k<k<k} CiJ3 -max CiJ3 !!!._m_m, £_c_c, __ _ 

279180c+~(279180c)2 +3900519x7840800mk 

3900519m 

(5.2.19) 

(5.2.20) 
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Then, the Pade approximation gives the boundary of asymptotically stable region 

of the approximate system on the plane of (u,v) for each combination of the sys­

tem parameters o.<m~m~m, o.~f~C~C and o.~ls.~k~k ifo.<f<3Iw3. Once the 

characteristic equation of the delayed dynamic system is simplified to Eq. (S.2.S) 

in this case, the Kharitonov Theorem can be implemented to test the interval sta­

bility. From the practical point of view, it is reasonable to assume that @>o. and 

~>o.. Then, by using Eq. (S.2.19), we have 

(S.2.21) 

where a j are the coefficients in Eq. (S.2.S), and the corresponding bounds fl) 

and ZiJ are defined as following 

4 - --4 fl.o=mr, ao=mr, 

fl.2 =18o.mr2 +2o.cr3 +kr4 -ur4 +2o.vr3, 

- 180.--2 20.--3 k--4 4 20. 3 a2 = m r + c r + r -~ + vr, 

fl.3 =84o.mr+ 18o.cr2 + 2o.kr3 + 2o.u r3 -18o.vr2 , 

Zi3 =84o.m f + 18o.cf2 + 2o.uf3 + 2o.u r3 -18o.vr2 , 

fl.4 =168o.m+84o.cr+18o.kr2 -18o.ur2 +84o.vr, 

a4 =168o.m+84o.cf+18o.kf2 -18o.ur2 +84o.vr, 

fl.5 =1680f+84o.kr+84o.u r-168o.v, 

a5 =168o.c +84o.k f +84o.u r-168o.!:, 

(S.2.22) 

with the following simplified notions for different bounds of feedback gains and 

time delays 

{
--J >0. -, vr, v_ , 

vr l = -
vI), v<o., 

J' {vr), !:~o., 
vr = 
- !:fJ, v<o., 

j=1,2,3,4, (S.2.23a) 

j=1,2,3,4. (S.2.23b) 
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According to the Kharitonov theorem, it is sufficient to check the stability of 

four cases of the coefficients in Eq. (5.2.5) when testing the interval stability of 

Eq. (5.2.5) subject to Eq. (5.2.21). These four cases are 

(5.2.24a) 

(5.2.24b) 

(5.2.24c) 

(5.2.24d) 

From the Routh-Hurwitz conditions in Eq. (5.2.13), the stability of each case can 

be easily tested. There follows the approach to testing the interval stability of a 

dynamic system governed by Eq. (5.2.1) as following. 

Algorithm 5.2.2 

(a) Check the stability of the nominal system by using Eq. (5.2.13) and com­

pute w3 • If the nominal system is asymptotically stable and 0<f"<3Iw3 , then go to 

the next step. 

(b) Test the stability of system in the four cases in Eq. (5.2.24) by using again 

Eq. (5.2.13). If the system is asymptotically stable in all of the four cases, then the 
interval stability is justified. 

Example 5.2.1 Consider an illustrative example of the linear dynamic system 

with nominal parameters m=l, c=3, k=l, 7: = 0.55, u=-2, and v=-3. It is 

easy to see from Eq. (5.2.13) that the system is asymptotically stable. 

We check first the interval stability of the system with 25% variation in every 

system parameter. That is, the system parameters are allowed to vary on the fol­

lowing intervals 

0.75 :s;,m:s;, 1.25, 2.25 :s;,c:s;, 3.75, 0.75 :s;,k:s;, 1.25, 

0.4125 :s;,r:s;, 0.6875, -2.50:s;,u:s;, -1.50, -3.75 :s;,v:s;, -2.25. (5.2.25) 

Then we have f!4 = -57.0867. By using the Kharitonov theorem, we find that the 

approximate systems with the parameters on the given intervals are not stable, so 

the method fails to test the interval stability of the original system. 

If the variations in the system parameters are confined to 20%, that is 

0.80 :s;,m:s;, 1.20, 2.40 :s;,c:s;, 3.60, 0.80 :s;,k:s;, 1.20, 
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0.44 :S;,:S; 0.66, -2.40 :S;u:S; -1.60, -3.60 :S;v:S; -2.40, (5.2.26) 

we have 

(5.2.27) 

The Kharitonov theorem indicates that the approximate systems with the parame­

ters On the new intervals are asymptotically stable. As T<min(3/wy JIs./m) , the 

interval stability is justified. 

In the case of unequal time delays, as stated in Subsection 5.2.l, the asymptoti­

cally stable region may not be as simple as shown in Fig. 5.2.1 if 1"-'21 is not 
very small. Thus, the approach may be very poor in the test of interval stability for 

the systems with variable unequal time delays if max(IT, -1:21,172 -1:,1) is not very 

small. 
In practical test of asymptotic stability and interval stability, great care must be 

taken when the system parameters are chosen with a very small negative value 

v-v(a/) and a very small positive value k-u. If this is the case, the negative 

velocity feedback gain should be increased alternatively to a little bit larger value 
so as to make the test result be more reliable if the given system is tested to be as­

ymptotically stable by using the approach. 

In summary, the presented approach of stability test to the delayed dynamic 
systems by using the Pade approximation is so simple that the stability test can be 
completed by using a calculator. Though this approach may not always be suc­

cessful, it is an effective approach of stability test with high accuracy within the 
scope of concern both for the asymptotic stability and the interval stability. In ad­
dition, the idea of the Pade approximation can be extended to the study on more 

complicated delayed dynamic systems. 

5.3 Dynamics of Simplified Systems via the Taylor Expan­
sion 

This section presents a study on the validity of the Taylor expansion of delayed 

feedback from the viewpoint of system stability. We first check the effectiveness 

of the Taylor expansion of delayed state feedback for a linear system, and then 
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study the dynamics of a nonlinear system with delayed velocity feedback through 

the use of singular perturbation theory. 

5.3.1 Linear Systems with Delayed State Feedback 

For simplicity, the study in this subsection is confmed to a linear single-degree-of­

freedom system with delayed state feedback as following 

mi(t)+CX(t)+kx(t)=UX(t-T] )+VX(t-T2 ) , (5.3.1) 

where m>O, k-u>O, c-v>O such that the system is asymptotically stable when 

the time delays totally disappear. The analysis in Subsection 5.1.1 indicates that 

Eq. (5.3.1) is asymptotically stable ifthe time delays T] and T2 are short enough. 

When the time delays are very short, it is reasonable and very popular for engi­

neers to replace the delay terms in Eq. (5.3.1) with the following Taylor expan­

sions 

Hence, Eq. (5.3.1) can be simplified as one of the following ordinary differential 

equations, depending on the order of truncation 

where 

a2x(t)+a]x(t)+aox(t)=O, 

a3x(t)+a2 x(t)+a]x(t)+aox(t)=O, 

a4x(4) (t)+a3x·(t)+a2x(t)+a]x(t)+aox(t)=O , 

1 4 1 3 
a4=--UT] +-VT2 , 

24 6 

For very short time delays at the same order, Eq. (5.3.4) becomes 

a] =C-V+O(T]), 

a4=O(T~), ... 

(5.3.3a) 

(5.3.3b) 

(5.3.3c) 

(5.3.4) 

(5.3.5) 
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In what follow, we examine the efficacy of the above approximation for different 

truncations in the Taylor expansion from the viewpoint of stability. 

If the time delays appear in the feedback, but short enough, ao, a j and a2 

keep positive and Eq. (5.3.3a) remains the asymptotic stability of delay free sys­

tem. In this case, Eq. (5.3.3a) is topologically equivalent to Eq. (5.3.1) and the 

Taylor expansion is effective. 

Equation (5.3.3b) is an ordinary differential equation of extended order and has 

a very small coefficient a3 in front of the highest order derivative. The differential 

equation with a very small coefficient of the highest order derivative is called the 

singularly perturbed differential equation. IfEq. (5.3.3b) is asymptotically stable, 

the Routh-Hurwitz criterion requires that 

(5.3.6) 

Substituting Eq. (5.3.4) into the above inequalities gives 

1 3 1 2 
(jUX"j -"2VX"2 >0, m+O(X"J>O, m(c-v)+O(X"j ,X"J>O, k-u>O. (5.3.7) 

The second, the third and the fourth inequalities in Eq. (5.3.7) always hold true for 

very short time delays. The first inequality, however, indicates that the Eq. 

(5.3.3b) may become unstable and topologically different from Eq. (5.3.1) when 

(5.3.8) 

does not hold. If this is the case, the Taylor expansion of higher orders does not 
work for Eq. (5.3.1). 

For Eq. (5.3.3c), the Routh-Hurwitz criterion imposes another condition 

1 4 1 3 a4 =--UX"j +-VX"2 >0. 
24 6 

(5.3.9) 

The Taylor expansion for delayed feedback, therefore, is only effective under 

certain conditions. 

Hence, great care must be taken in the stability analysis of simplified differenti­

al equations of extended order when the Taylor expansion of higher orders is used 

to reduce the truncation errors, since these differential equations are singularly 

perturbed and may feature totally different dynamics. 

For instance, Eq. (3.l.34) indicates that Eq. (5.3.1) in the case of small damping 

c< • .j2mk and equal time delays X"[ =X"2 =X" is delay-independent stable if the ab­

solute values of feedback gains are so small that 
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2 2 2 
~+(~-1)2<l. e 2mk 

(5.3.10) 

From Eq. (5.3.8), however, the asymptotic stability ofEq. (5.3.3b) requires that 

u1'-3v>0. (5.3.11 ) 

If no displacement feedback is used, the velocity feedback should be negative. 

This is an additional requirement owing to the Taylor expansion of higher orders 

for the delayed feedback. 

Furthermore, when Eq. (5.3.3c) is implemented to predict the system stability, 

Eq. (5.3.9) requires that 

u1'-4v<0. (5.3.12) 

If no displacement feedback is involved, Eqs. (5.3.11) and (5.3.12) are contradic­

tive. This contradiction indicates again that the Taylor expansion of higher orders 

for the delayed feedback does not give correct analysis of system stability if the 

simplified differential equations are singularly perturbed. 

The effect of a short time delay on the simplified model governed by the sin­

gularly perturbed differential equations will be further discussed in next subsec­

tion through an example of the Duffing oscillator with delayed velocity feedback. 

5.3.2 Nonlinear Systems with Delayed Velocity Feedback 

This subsection deals with a nonlinear autonomous system with delayed velocity 

feedback as following 

x(t)+ p(x(t),x(t))=vx(t-1'), #0, 1'20 . (5.3.13) 

For a very short time delay l' , the truncated Taylor expansions of different orders 

for the delayed velocity feedback in Eq. (5.3.13) give different simplified ordinary 

differential equations as following 

x(t)+ p(x(t),x(t))=v[x(t)-rr(t)] , 

2 

x(t)+ p(x(t),x(t))=v[x(t)-rr(t)+~X'(t)], 
2 

(5.3.14a) 

(5.3.14b) 

The dynamics of Eq. (5.3.14a) is clear if r is so short that the condition 

l+v1'>O holds. Thus, attention hereinafter is paid to Eq. (5.3.14b), which is a sin-
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gularly perturbed differential equation. By using the state variables Yl =X , 

Y2=X, Y3=X, Eq. (5.3.14b) can be recast as a set of differential equations 

Y2 =Y3 , 

&2 Y3 =~[P(YI 'Y2)-ry2 +(1+V&)Y3]=g(YI 'Y2 'Y3'&)' 
v 

where &=.<<1 is a small, non-negative parameter. 

(5.3.15) 

If &=0, Eq. (5.3.15) degenerates to a set of ordinary differential equations 

{~I=Y2' 
Y2=Y3' 

which is subject to an algebraic constraint 

Solving Eq. (5.3.16b) for Y3 yields 

Y3=h(YPY2)=-P(Yl'Y2)+ry2· 

(5.3.16a) 

(5.3.16b) 

(5.3.17) 

Obviously, h(Yl,y2) is an invariant manifold ofEq. (5.3.16) in R3. That is, any 

trajectory ofEq. (5.3.16) starting from h(Yl,y2) does not leave h(Yl,y2) forever. 

Because the time scale used here is slow compared with the fast one used later, 
h(Yl,Y2) is called the slow manifold. Substituting it into Eq. (5.3.16a) gives 

(5.3.18) 

Eq. (5.3.18) is called the differential equation of reduced system in the theory of 

singularly disturbed differential equations. It governs the motion of reduced sys­

tem on the slow manifold. Here, the reduced system is a system without time de­

lay. 

In the study of singularly perturbed differential equations, it is helpful to intro­

duce a new time scale 

t 
S=-2· 

& 
(5.3.19) 
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Because 8 is very small, s varies much faster than I . Hence, the variables I and 
s are usually referred to as the slow lime and the fast lime, respectively. To 
distinguish the derivatives with respect to different time scales, the prime is used 
to represent the differentiation with respect to the fast time s. Substituting I in 
Eq. (5.3.15) by s yields 

(5.3.20) 

For Eq. (5.3.20), any point (Yl'Y2,h(Yl'Y2)) is an equilibrium when 8=0 since 
g(Yl,y2,h(Yl,Y2),0)=0. However, this is not true for Eq. (5.3.15) because Eqs. 
(5.3.15) and (5.3.20) are not equivalent if 8=0 . 

The dynamics ofEq. (5.3.20) with 8=0 is characterized by a one-dimensional 
differential equation 

(5.3.21) 

where (Yl,Y2) can be regarded as constant parameters since y;=O and y;=O. 

Given a pair of (Yl,y2) , Eq. (5.3.21) governs a fast motion approaching to the 
slow manifold h(YI ,Y2) if v<O. This motion is usually called the fasl manifold 
for short. 

Now, it is clear that Eqs. (5.3.21) and (5.3.18) govern two kinds of extreme dy­
namics associated with Eq. (5.3.15) respectively when &=0. That is, the fast 
manifold approaching to the slow manifold if v<O and the motion, which may be 

simple or very complicated, on the slow manifold. The aim of further study is to 
gain an insight into the dynamics of Eq. (5.3.15) for very small 8 from the 
knowledge of the asymptotic behavior of two "limit" Eqs. (5.3.18) and (5.3.21). 

Example 5.3.1 To demonstrate how to analyze the dynamics of Eq. (5.3.15), 

we study the dynamics of a Duffing oscillator under delayed velocity feedback 

around its equilibrium. Following Eq. (1.1.13), let 

(5.3.22) 

where ?~O. In what follows, attention is paid to the case when J1~0 . 

If 8=0, Eq. (5.3.15) becomes 
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(5.3.23a) 

with an algebraic constraint 

Y3 =-(y, +f.IY~ +20'J+VY2' (5.3.23b) 

Figure 5.3.1 illustrates the slow manifold (5.3.23b), where a trajectory of Eq. 

(5 .3.23a) spirally approaches to the equilibrium, when ,u=0.1, S =0 and 
v=-0.2. 

150 

100 

50 

Y3 0 

·50 

·100 

10 10 

Fig. 5.3.1. A trajectory on the slow manifold 

When & ;to, Eq. (5.3 .15) becomes 

(5.3.24) 

As it is difficult to deal with this singularly perturbed differential equation, we 
turn to its equivalent form in the fast time scale, namely, 

, 2 
Y,=& Y2' 

(5.3.25) 

Unfortunately, the asymptotic stability theorem in the theory of singularly per­

turbed differential equations, see (lsidori 1995), can not be applied directly to this 
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equation. The analysis below will be based on the center manifold theorem of or­

dinary differential equations, see (Guckenheimer and Holmes 1983). 

Let s be a function in s and rewrite Eq. (5.3.25) as following 

s'=O, 

Y;=S2Y2' 

Y;=S2Y3' 

y~ =3.[Y\ +,uy; +(2( -V)Y2 +(1+VS)Y3]. 
v 

(5.3.26) 

Equation (5.3.26) has a unique equilibrium (0,0,0,0) since f.l~0. According to 

the following Jacobian ofEq. (5.3.26) at (0,0,0,0) 

0 0 0 0 

0 0 0 0 
J= 0 0 0 o ' (5.3.27) 

0 
2 2(2( -v) 2 

v v v 

it is easy to conftrm that the equilibrium is asymptotically stable if and only v<O. 
Now we study the local dynamics ofEq. (5.3.26) around the equilibrium. Using 

the center manifold theorem, we can prove the following fact. That is, for Eq. 

(5.3.26), there exists s·>O and an invariant manifold 

(5.3.28) 

which is passing through the point (0,0,0,0) and tangent to the super-plane of 

Y3 =0 at (0,0,0,0) such that for each se[O, s·] and all y\2 + Y2 2 <r2 

(5.3.29) 

where h(Yl,y2)=H(Yl,Y2,0) . Th invariant manifold in Eq. (5.3.28) is also called 

a slow manifold. On each of such a manifold, Eq. (5.3.26) can be simplifted as 

(5.3.30) 

The local dynamics of Eq. (5.3.26) around (0,0,0,0) is fully determined by the 

motion on the slow manifold H(Yl'Y2'S). 
In what follow, the slow manifold and Eq. (5.3.30) are determined. Differen­

tiating Eq. (5.3.28) at both sides with respect to s leads to 
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(5.3.31) 

Substituting Eq. (5.3.26) into the Eq. (5.3.31) gives the governing equation of the 

slow manifold H(YI,Y2,&) 

2 8H 8H 2 3 
& [-Y2+-Y3]=-[YI +,uyl +(2; -v)Y2+(1+v&)H(Y\>Y2'&)]' (5.3.32) 

Byl By2 v 

In general, it is impossible to solve this partial differential equation for 

H(YI ,Y2,&) . So, we turn to looking for an approximate solution ofEq. (5.3.32) as 

following 

(5.3.33) 

Substituting Eq. (5.3.33) into Eq. (5.3.32) and equating the same power of &, we 

obtain 

hO(YI'Y2)=-[YI +,uy; +(2; -V)Y2]' 

hi (Y\>Y2)=V[YI +,uy; +(2; -V)Y2]' 

(5.3.34a) 

(5.3.34b) 

(5.3.34c) 

Substituting Eqs. (5.3.33) and (5.3.34) into Eq. (5.3.30) gives the differential 

equation of reduced system 

It is easy to fmd that if &>0, the unique equilibrium (0,0) is asymptotically sta­
ble when v<O. According to the analysis above, we conclude that the equilibrium 

(0,0,0) is asymptotically stable if and only if v<O and &>0 small enough. 

Given &=0.3, the slow manifold and a phase trajectory of Eq. (5.3.24) are 

shown in Fig. 5.3.2 for p=O.l,; =0, v=-O.2. Worthy of mention is that the two 

slow manifolds in Figs. 5.3.1 and 5.3.2 are different though they look very similar. 

Figure 5.3.2 illustrates that the trajectory starting from a state point above the slow 

manifold goes down to the slow manifold very rapidly and then approaches to the 

equilibrium along a spiral on the slow manifold. It is interesting that & taken here 
is not very small. 
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200 

o 
Y2 10 10 

Fig. 5.3.2. A trajectory approaching to the slow manifold first and then to equilibrium 

As a result, the dynamics of a nonlinear autonomous oscillator with the nega­

tive velocity feedback involving a short time delay includes two stages. The first is 

a very fast decay, and the second is very close to the vibration of delay free system 

around the equilibrium. Here, the negative gain of velocity feedback guarantees 

the rapid decay owing to the singularly perturbed term vr 2x·(t)12 in Eq. 

(5.3.14b). 

If the condition of v<O is released, Eq. (5.3.l4b) fails to predict the proper dy­

namics of Eq. (5.1.13). As will be seen in Section 7.3, for instance, the Duffing 
oscillator with delayed velocity feedback may exhibit very abundant nonlinear dy­

namics apart from the decaying to the equilibrium. 
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6 Dimensional Reduction of Nonlinear Delay 
Systems 

Time delays usually give rise to great difficulty in the dynamic analysis of con­

trolled mechanical systems. The difficulty increases so dramatically with an in­
crease of system dimensions that the analytical results for the dynamics of delay 

systems of high dimensions are considerably few. So, it is highly demanded to de­

velop some techniques for the reduction of system dimensions. 

As stated in Section 2.3, the state space of a delay differential equation is a kind 

of Banach space and the dimension of solution space is infinite. To simplify the 
delayed dynamic systems, great efforts have been made for the reduction of sys­

tem dimensions. The available approaches include the truncated Taylor expansion, 

the Pade approximation in (Lam 1993) and (Wang and Hu 1999b), the Hankel op­

erator based method in (Ohta and Kojima 1999), and the center manifold method 

in (Faria and Magalhaes 1995) and (Diekmann et al. 1995), or referred to as the 
integral manifold approach alternatively in (Hale 1977). As analyzed in Sections 

2.3 and 5.3, the truncated Taylor expansion method, albeit very simple, may give 
rise to wrong dynamics in general. The Hankel operator method can be used only 
for linear systems. The center manifold reduction is essentially a nonlinear 
method. In the implementation of this method, it is necessary to determine wheth­

er the system has a finite number of characteristic roots with zero real parts and 
the remaining characteristic roots have negative real parts. This is usually a hard 
task to complete for the high dimensional systems with time delays. To avoid this 
tough problem, the special features of system should be made advantage of. 

In engineering, a great number of mechanical systems are composed of two 

kinds of subsystems, one is relatively stiff and has a high fundamental natural fre­

quency, while the other is relatively soft and has a low fundamental natural fre­

quency. Such a kind of systems is usually referred to as the stiff-soft systems. Ex­

amples of those systems include the ground vehicles discussed in Subsection 

1.1.2, where the vehicle body is supported by soft front and rear suspensions and 

harder tires, the buckled viscoelastic beam supported by stiff vertical columns, etc. 

For the delay-free dynamic systems composed of stiff and soft subsystems, the 
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equations of motion can be formulated, by introducing a small singular parameter 

defined as the ratio of the fundamental natural frequencies of two subsystems, as 

singular perturbation of the equations of motion of the soft subsystem. Then, the 

theory of geometric singular perturbation in (Frenichel 1979) offers a natural 

analytic-geometric tool to deal with the dynamics of systems involving stiff-soft 

subsystems. Based on the singular perturbation approach, the so called slow in­
variant manifold and fast invariant manifold can be introduced so that the domi­

nant dynamics of a stiff-soft system is studied on the slow invariant manifold, the 

dimension of which is identical to that of the phase space of soft subsystem. This 

case has been intensively studied, see (Bajaj et al. 1997) and (Georgiou et al. 

1998). To the best knowledge of the authors, however, no such results are avail­

able for the dimensional reduction of delayed dynamic systems involving stiff and 

soft subsystems. 

In this chapter, some basic facts on the decomposition of the state space are 

presented first. Then, an outline of the center manifold reduction is given for gen­

eral functional differential equations in critical cases. Afterwards, the center mani­

fold reduction is presented for the delayed dynamic systems involving stiff and 

soft subsystems governed by singularly perturbed differential equations. As an ap­

plication of the proposed approach, the stability analysis is made for a quarter car 

model with active chassis. 

6.1 Decomposition of State Space of Linear Delay 
Systems 

This section deals with the linear delay differential equations in the frame of linear 

functional differential equations. For this purpose, given a positive number r, let 

C=C([-r, O],W) be the Banach space of continuous functions mapping 

[-r, 0] into R n • For each ;EC, the norm 11;lle =sup_,-$8,;oll;(O)11 is defined. Here, 

11·11 is any norm in Rn. As done in Subsection 2.2.1, the linear autonomous differ­

ential equation with a time delay can be cast as a functional differential equation 

in C as following 

(6.1.1) 

where x,(O)=x(t+O) for -r <:;;0 <:;;0 , L is a linear operator defined as 

L(;) = f.[d'1(O)];(O) , (6.1.2) 
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through a bounded variation matrix function '1( (}) . The proof of the main results 

in this section can be found in (Hale 1977) and (Hale and LuneI1993). 

To focus on the effect of initial function ;EC, let x,({},;) denote the solution 

ofEq. (6.1.1) starting from xo({})=;.Defineamapping T(t):C~C as 

It can be shown that T(t) has the following properties. 

(a) T(O)=I. 

(b) T(t+s)=T(t)T(s) for all t~O and s~o . 

(6.1.3) 

(c) T(t) is bounded for each t~O and is strongly continuous on [0, +(0), i.e., 

lims-->,!!T(t);-T(s);!!=O for t~O and ; E C. 

(d) T(t) is completely continuous (compact) for t~T. That is, T(t) , t~T is 

continuous and maps any bounded set into a precompact set. 

Therefore, T(t), t>O is a strongly continuous semi-group of linear operators 

in Con [0, +(0), and the infmitesimal generator A of T(t) can be defmed as 

(6.1.4) 

provided that the limit exists. It can be shown that the domain D(A) of A is den­

se in C, and the range R(A) is in C. Here, a set S1 is said to be dense in the set 

S2 if any point SES2 is the limit of a point sequence of S1. Direct computation 

shows that for all ;ED(A) , we have 

and 

{
d;({}) 

A(;)= ~' 
L(;), 

(}E[-T, 0), 

(}=O, 
(6.1.5) 

(6.1.6) 

To decompose the state space, we need the concept of adjoint operator of A. 
For this purpose, let C"=C([O, T),R"n) , where R"n is the n-dimensional vector 

space of row vectors. For a(s)EC·, O~S~T and P({}) E C, -T~{}~O, define the 

bilinear form of a(s) and P({}) as following 

(6.1.7) 
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Definition 6.1.1 The adjoint operator A' of A is defined in D(A')S;;;;;C' such 

that for all (JED(A) and Ij/ED(A') , the following bilinear fonn holds 

(6.l.8) 

It is straightforward to derive that A' is in the fonn 

{

_ dlj/(s) 

A'(Ij/) = ds' r Ij/( -B)d1J (B), 

S E(O, 'f], 

(6.l.9) 

S=o, 

and D(A') is dense in C' . 

6.1.1 Spectrum of a Linear Operator 

To proceed further, we need the definition of the spectrum of a linear operator de­

fined in a Banach space. 
Definition 6.1.2 For a linear operator A:X ~X defined in a Banach space X, 

the resolvent set peA) of A is defined as a set on the complex plane as below 

p( A) == {A, I (AI - A) has a bounded inverse with the domain dense in X }. (6.1.1 0) 

The spectrum of A is the complement of peA) and is denoted by a(A). 

Now, we consider the linear operator A in Eq. (6.l.5), the domain of which is 

dense in Banach space C. Then, there is a constant A,Ep(A) if and only if 

(6.1.11) 

has a solution (J in D(A) for every Ij/ in a dense set in C, and the solution de­

pends continuously upon Ij/ . Hence, 

(6.1.12) 

Solving Eq. (6.1.12) gives 

(J(B)=eU)b+ s: eA(lI-¢)Ij/(~)d~, b==(J(O). (6.1.13) 

It follows that (J is in D(A) if and only if ~EC and 

(6.1.14) 

Thus, we have 
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(6.1.15) 

Defme the characteristic matrix A( A ) as 

(6.1.16) 

Then, Eq. (6.1.15) gives 

A(A)b = Ab- i, e2°[d'l (O)]b= -V'(o) + i, d'l (0)[ re2(O-;)V'(~)d~]. (6.1.17) 

Thus, for each V'EC, there exists a unique b if and only if detA(A)*O. There­
fore, Eq. (6.1.11) has a solution; for every V'EC if and only if detA(A)*O, 
namely, A is not a characteristic root. If detA(A)=O holds, Eqs. (6.1.13) and 
(6.1.17) imply that there exists a nonzero solution of Eq. (6.1.11) for V'=O. This 
means that AEa(A) holds. 

The above analysis can be summarized as the following theorem. 
Theorem 6.1.1 For the linear operator A in Eq. (6.1.5), we have 

p(A)={AI detA(A)*O}, a(A)={AI detA(A)=O}. (6.1.18) 

Theorem 6.1.1 shows that the spectrum of A is just the same set of characteristic 

roots ofEq. (6.1.1). A complex number AEa(A) is also called the eigenvalue of 

A. For AEa(A) , the set of all ;EC satisfying (A-Al);=O is called the ei­
genspace. 

Definition 6.1.3 The null space N(A-JJ) of A-JJ is the set of all ;EC un­
der (A-AJ)t}=O. For AEa(A) , the generalized eigenspace of A, denoted by 

M 2 (A), is the smallest subspace in the state space C containing all ;EC such 
that (A-JJ)k;=O holds for some k=1, 2, .... 

Because A is a closed operator, the generalized eigenspace of each AEa(A) is 

the same as N(A-JJ)k for certain k. In addition, detA(A) is an entire function 

in A on the complex plane and hence has roots of finite order. The dimension of 

N(A-JJ)k is equal to the multiplicity of root A of detA(A). Therefore, the di­

mension of every generalized eigenspace is finite. 

The operator A* has similar properties to those of A. For example, we have 

Theorem 6.1.2 AEa(A) if and only if AEa(A*). 

Theorem 6.1.3 The null space N(A-JJ/ ,namely the generalized eigenspace 

M 2 (A) for AEa(A) , is composed of 

(6.1.19) 
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[

PI P2 ... Pk I 
A == 0 PI ... Pk-l L1 (j)(A) 

k :: :' Pj+l ., 
'" J. 

o 0 PI 

(6.1.20) 

Similarly, N(A* _JJ)k consists of 

(6.1.21) 

6.1.2 Decomposition of State Space 

The generalized eigenspace M;. (A) is invariant under the operator A, and T(t) 

as well. That is, AM;.(A) ~ M;.(A) and T(t)M;.(A) ~ M;.(A), because tP in 

M;. (A) implies that (A-JJ)k tP=O holds for some integer k, and A, as well as 

T(t) , is commutable with (A-JJ)k. Denote a set of basis vectors for M;. (A) by 

tPl;' ,tP{,.· ·,tPj , and let 

(6.1.22) 

Then, there is a dxd matrix B;. so that AfP;. =fP;.B;. since AM;. (A) c M;. (A). 

From the definition of A, we have 

(6.1.23) 

Thus, for t~O we have 

(6.1.24) 

Therefore, on the generalized eigenspace corresponding to a AECT(A), the func­

tional differential equation (6.1.1) has the same structure as an ordinary differenti­

al equation. Through repeated applications of the above process, we know that if 

A=={A'I,Az,",A,} is a set of eigenvalues ofEq. (6.1.1), and 

(6.1.25) 
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where tP;. is a basis matrix for M;. (A), and B;. is the matrix defined by 
) )) 

AtP;'j -=tP;'jB;'j ,)=1, 2, ... , s, then the only eigenvalue of B;'j is Aj • Moreover, 
we have the following theorem. 

Theorem 6.1.4 The subspace 

(6.1.26) 

is invariant under A and T(t), and there exists an invariant subspace QA such 

that 

(6.1.27) 

Theorem 6.1.4 gives a very clear picture of the solutions of Eq. (6.1.1). In fact, 

on generalized eigenspaces, Eq. (6.1.1) behaves essentially as an ordinary differ­

ential equation and the decomposition of space C into two subspaces invariant un­

der A and T(t) enables one to separate out the dynamics of Eq. (6.1.1) on the ei­
genspaces from the other type of behavior. The above decomposition of C allows 

one to introduce a direct sum decomposition that plays the same role as the Jordan 

canonical form in ordinary differential equations. 

The decomposition of the Banach space C can be completed provided that the 

projection operator defined by this decomposition can be explicitly characterized. 

For AEa(A), let 'F;. -= [VIr VIi ... VI J]T and (}>;. -= [;1 ;2 "';d] be the basis 
matrices for M;. (A*) and M;. (A), respectively. Then, the dxd matrix 

('F;. ,(}>;. )-=[(Vli ,;j)] is nonsingular. In addition, it can be normalized as an identity 
matrix by properly selecting VIi or ;i, i=I,2, ... , d such that ('I';.,tP;.)=[8ij] 

with 8;; =1 and 8ij *0, i*) . Then, for any ;EC, we have the decomposition 

where 

(6.1.28) 

(6.1.29a) 

(6.1.29b) 

(6.1.29c) 

This decomposition can be extended to the case of multiple eigenvalues. Let 

A={A1,~;··,As},andlet PA be the linear extension of the M;..(A), )=1,2, ... ,s. 
I 

We refer to this set as the generalized eigenspace of A associated with A. Simi-

larly, we define P; as the generalized eigenspace of A* associated with A. 

Then, we have 
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Theorem 6.1.5 Assume that f/J A and rp A are respectively the basis matrices of 

PA and P~ such that (rp A ,f/J A )=1. Then, we have PA = {qSEC! qS=f/J Ab for some 

vector b} and QA = {qSEC! (rp,qS)=O } such that 

More precisely, for any qSEC , we have 

Example 6.1.1 Consider the scalar delay differential equation 

where 

1t fO x(t) = --x(t -I) == [d1J(O)]x(t + 0) , 
2 -1 

OE(-I,O], 

0=-1. 

We study the dynamics ofEq. (6.1.32) by decomposing its state space. 

The bilinear form defined by Eq. (6.1.7) is 

and the linear operators A and A* are given by 

OE[-I, 0), 

0=0, 

SE(O, -1], 

S=O. 

(6.1.30) 

(6.1.32) 

(6.1.33) 

(6.1.34) 

(6.1.35a) 

(6.1.35b) 

Moreover, qS is in N(A/ - A) if and only if qS( O)=eUJ b, -1:<:;0:<:;0, where b IS a 

constant and A yields 

A+~e-A=O . 
2 

(6.1.36) 

Also, If/ falls into N(A/ -A*) if and only if If/(s)=e-.<sc, O:<:;s:<:;l, where c is a 

constant and A yields Eq. (6.1.35). 



www.manaraa.com

6.1 Decomposition of State Space of Linear Delay Systems 197 

It is easy to find that Eq. (6.1.35) has a pair of pure imaginary roots ±ire/2 and 

the remaining roots have negative real parts. Let A={ire/2, -ire/2} . It becomes 

immediately obvious that 

(6.1.37) 

is a set of basis vectors for the generalized eigenspace P=PA of A associated 

with A, where 

and that 

rP, (B)=sin reB , 
2 

reB 
rP2(B)=cos-, -l:O::B:O::O, 

2 
(6.1.38) 

(6.1.39) 

is a basis matrix for the generalized eigenspace P~ of A* associated with A, 

where 

*() . res If/, s =sm-, 
2 

* res If/ 2 (s )=cos- , 
2 

(6.1.40) 

Noting that the matrix B subject to A t1> = t1> B is in the form 

B=[ 0 -re/2] 
re/2 0 ' 

(6.1.41) 

we have 

T(t)t1>=t1>exp(Bt) . (6.1.42) 

Now, we decompose the space C by A. The transformations are simpler if 

('1'* ,cP) = [(If/i* ,rPj)] is an identity matrix. However, it is not the identity matrix 
now. Therefore, we define a new basis matrix 'I' for P~ by '1'=('1'* ,cP) -, '1'* , and 

then have ('P,cP)=I. The explicit expression for the basis matrix 'I' is 

(6.1.43) 

where 

. res re res res re. res 1 
If/, =2Jl(sm-+-cos-), If/2 =2Jl(cos---sm-), Jl 2 .(6.1.44) 

2 2 2 2 2 2 1 +re 14 

If we decompose C by A and let Q=QA for simplicity in notation, then any rPEC 

can be written as 

(6.1.45) 

where 
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{
bl =Jl1C¢(O)- Jl1C f (cos 7rS -~sin 7rS )¢(s)ds, 

II 2 2 2 

i 1t 1tS . 1tS 
b2 =2/1¢(O)+ Jl1C (-cos-+sm-)¢(s )ds. 

12 2 2 

(6.1.46) 

The explicit expressions for bl and b2 can be determined by substituting the ex­

pression for tp into Eq. (6.1.35b). 

In the subspace P, we have T(t)¢=tPexp(Bt)b. The elements ¢I and ¢2 of 

tP serve as a frame of coordinates in P . For any initial value tPb in P , we have 

T(t+4)tPb=T(t)tPb , (6.1.47) 

since exp[B(t+4)]=exp(Bt). In particular, we have T(4)tPb=tPb. This implies 

that the trajectories of Eq. (6.1.32) in Con P are closed curves. As a result, eve­

rything is clear in space C even though it is quite difficult to visualize the trajec­

tories ofEq. (6.1.32) on the plane of (x,f) . 

6.2 Dimensional Reduction for Stiff-soft Systems 

This section is devoted to the problem of dimensional reduction for nonlinear de­

lay systems composed of stiff and soft subsystems. We consider again the quarter 

car model of active suspension with a time delay in the state feedback as discussed 

in Subsection 3.6.1. Regarding to the vertical motion, the vehicle of concern can 

be considered as a stiff-soft system, where the soft subsystem is composed of the 

vehicle body and the suspension, while the stiff subsystem the tire and the un­

sprung mass. By introducing a proper time scale and a small singular parameter, 

the system dynamics can be described by a set of singularly perturbed differential 

equations with a time delay. Furthermore, this set of equations can be transformed 

into the standard form in critical cases. Then, the center manifold reduction is used 

to simplify the equation. The approach enables one to reduce a delayed stiff-soft 

system in the infmite dimensional solution space to a low order dynamic system 

without time delay, the dimension of which is identical to that of the state space of 

soft subsystems. It is essentially a nonlinear method and is more flexible in appli­

cations compared with the direct use of the center manifold reduction. 
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6.2.1 A quarter Car Model as a Singularly Perturbed System 

As discussed in Subsection 1.1.2, the linearized dynamic equation of a quarter car 

model of active suspension reads 

where Xb and Xt are the vertical displacements of the vehicle body of mass mb 
and the unsprung mass mt , kt is the linear stiffness of the tire. The vehicle body 

and the unsprung mass are connected through a passive suspension of stiffness ks 
and damping cs ' as well as a hydraulic actuator capable of generating a control 

force g(t). The control force g(t) yields the linear partial state feedback ofvehi­

cle body and includes a time delay r owing to the hydraulic actuator as following 

g(t) =uxb (t-r)+vxb (t-r). (6.2.2) 

The road disturbance denoted by z in Eq. (6.2.1) is the external excitation and 

can be set to be zero when the stability analysis is concerned with. 
The quarter car model of vehicle suspensions always features that the natural 

frequency ())s =.Jks/mb of vehicle body with the unsprung mass clamped is much 

lower than the natural frequency ())t =.J (k s + kt )/ mt of the unsprung mass with the 

vehicle body clamped. Hence, it is a typical stiff-soft system. 

To simplify the analysis, both the time t and the time delay r are substituted 

with the dimensionless ones 

(6.2.3) 

with help of the following dimensionless parameters 

(6.2.4) 

such that Eq. (6.2.1) can be recast into a set of singularly perturbed differential 

equations with a time delay 

{
X(t) = Asox(t)+ B soy(t)+ Asdx(t-r), 

& y(t) = A fOx(t)+ B foy(t)+ A fdx(t-r), 
(6.2.5) 

where the dot represents the derivative with respect to the new time t , and 
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_01 _ 1 e _00 [ ] [ ° ° 1 Aso = , Bso = , Asd = , 
-1 -e m(1+k) ~m(1+k) [-u -v] 

BJO=[~1 - e~l' 
~1+k 

A =[0 ° ] JO- m me ' A =[ ° ° ] Jd - mu mv . (6.2.6) 

In general, a stiff-soft system with delayed control can be described by a set of 

singularly perturbed differential equations with time delays if a small singular 

parameter is properly chosen. For simplicity, the attention in this section is paid to 

the following form of delay differential equations 

{
X(t)= I(x(t),y(t),x(t-r),y(t-r)), 

c y(t)= g(x(t),y(t),x(t-r),y(t-r)), 
(6.2.7) 

where O<c«l, I, gECP, p~l, 1(0,0,0,0)=0, g(O,O,O,O)=O, XER m 

and YER n are the state vectors of soft subsystem and stiff subsystem, respectively. 
In the next two subsections, an outline of the center manifold reduction is given 

first for the general functional differential equations in critical cases. Then, the 

center manifold reduction is presented for the singularly perturbed differential 

equation with a time delay. 

6.2.2 Center Manifold Reduction in Critical Cases 

Similar to the study in Section 6.1, a nonlinear differential equation with a time 
delay r can be written as a functional differential equation 

x(t)=L(x,)+N(x,), xER n , (>0, (6.2.8) 

where x,(f))=x(t+f)) for -r:S;f):S;O, L(x,) and N(x,) represent the linear and 

nonlinear parts, respectively. Equation (6.2.8) is not in the standard form of a state 

equation, so the decomposition C=PA EBQA in Theorem 6.1.5 for the Banach 

space C can not be directly used to the system reduction. To solve this problem, 

Eq. (6.2.8) is converted into the following differential equation of operators 

x, =A(x,)+@·N(x,), (6.2.9) 

where 
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A(tP«())={::' ():[-T, 0), 

L(tP), ()-O, 

{a, ()E[-T,O), 
@«(})= 

I, (}=o. 
(6.2.10) 

If the adjoint operator of L is denoted by L* , the adjoint operator A* of A reads 

SE(O, T], 
(6.2.11) 

S=o. 

Let A={IL I detA(IL )=O,ReIL=O}, where A(IL) is the characteristic matrix de­

fined in Eq. (6.1.16). Assume that A has m (finite) elements, then the Banach 

space C can be decomposed by A as C=PtBQ, where P and Q are two invari­

ant subspaces of C under A and T(/) . The subspace P is an m-dimensional sub­

space spanned by the eigenvectors associated with all IL in A. As done in Section 

6.1, let qJ=[tPl tP2 ... tPm] be a basis matrix for P, 'P=[vif V'J ... V'~]T be a basis 

matrix for the dual space p* of Pin C', subject to ('P,qJ)=[(V'i,tPj)]=I. Then, 

for each I, X t can be decomposed as X t =qJu+v with UER m and VEQ. Let ma­

trix E be the solution of matrix equation q,=qJ E , direct computation shows, see 

(Faria and Magalhaes 1995), that U and v are governed by the following ordi­

nary differential equations 

{
it=EU+'P(O)N(qJU+V), 
v=Av+@N(qJu+v)-qJ'P(O)N(qJu+v). 

(6.2.12) 

Here the operator A in the second equation ofEq. (6.2.12) is in fact the restriction 

of A on the subspace Q. 
The center manifold theorem in (Hale 1971) states that there exists an m­

dimensional center manifold ofEq. (6.2.8) given by 

(6.2.13) 

for some V=h(U)EQ with x in a neighborhood of the origin of Rn. The flow on 

the center manifold is given by X t =qJu+v. The function h can be determined 

from 

A(h( u»+@N(qJu+h(u»-qJ'P(O)N(qJu+h(u» 

=Dh(u)[Eu+'P(O)N(qJu+h(u»], 
(6.2.14) 
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where Dh(u) is the Jacobian of h(u) with respect to u. More explicitly we have 

d 
dOh(u)-tP'P(O)N(tPu+h(u» 

=Dh(u)[Eu+'P(O)N(tPu+h(u») 

for Oe[-1', 0) and the following boundary condition 

[L(h(u»+ N( tPu+h(u»-tP'P(O)N( tPu+h(u»)IIJ=o 

=Dh(u)[E u+'P(O)N( tPu+h(u»)IIJ=o' 

(6.2.15a) 

(6.2.15b) 

Thus, it is necessary to solve a series of boundary value problems in order to fmd 

out the elements of vector function h since L(;) and N(;) are in terms of ;(0) 

and ;( -1') . Compared with the case of ordinary differential equations, it is more 

difficult to obtain an explicit series approximation of v=h(u) in terms of u. 

Once the vector function h is found, the dominant dynamics of the original 

system in a neighborhood of the origin of W is governed by the first equation in 

Eq. (6.2.12). 

6.2.3 Reduction for Singularly Perturbed Differential Equations 

By introducing a fast time T/ == t / & and the corresponding time delay r == • / & , and 

denoting x(&T/) and Y(&T/) by x(T/) and Y(T/) respectively, Eq. (6.2.5) can be 

recast as 

{
X'(T/)=& /(x(T/),Y(T/),x(T/-r ),Y(T/-r », 
Y' (T/)= g( x(T/ ),Y(T/ ),x(T/-r ),Y(T/-r », (6.2.16) 

where the prime represents the derivative with respect to the fast time T/. Ac­

cording to g(O,O,O,O)=O, g(x(T/),Y(T/),x(T/-r),Y(T/-r» can be written as 

(6.2.17) 

Let z==[xT & yT)T eRm+I+1 and Z1/(O)==z(T/+O) for -r~O~O. Denote by 

C==C([ -r, O),Rm+I+I ) the Banach space of continuous functions mapping [ -r, 0) 

into Rm+I+1 with the previously defined norm. Then, Eq. (6.2.16) can be written in 

the form of differential equation of operators 

Z~=L(z1/)+N(z1/) , (6.2.18) 

where 
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(6.2.19) 

with N J ER m+J and N2 ERI. 

In practice, it is almost impossible for an engineering system to be neutrally 

stable. Thus, it is very natural to assume that the dynamic equation of the stiff sub­

system has no characteristic roots with zero real parts when the inertial of soft 

subsystem is clamped. That is, the free vibration of the stiff subsystem with the 

soft subsystem clamped either converges or diverges with an increase of time. 

Mathematically speaking, the characteristic equation 

(6.2.20) 

is assumed to have no pure imaginary roots. Then, Eq. (6.2.16) has m+1 repeated 

zero characteristic roots and the remaining characteristic roots do not have zero 
real parts. This fact enables one to use the center manifold theorem. 

In this case, the matrix function '1«()) in Eq. (6.1.1) takes the form, see (Qin et 

al. 1989) and (Stepan 1989), 

()=-r, 

()E(-r, 0), 

()=O, 

and the bilinear form defmed in Eq. (6.1.7) reads 

(V',;) = V'(O);(O) + fr V'(s+r)L2;(s)ds. 

(6.2.21) 

(6.2.22) 

Let C=PEBQ be the decomposition by the m+ 1 repeated zero eigenvalue of the 

state space C=C([ -r, 0],R m+1+J) • Then, it is necessary to find out a basis matrix 

rp for P and a basis matrix tp for p. satisfying (tp, rp)=I . 
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It is easy to show that the generalized eigenspace corresponding to zero eigen­

values coincides with the corresponding eigenspace. In fact, the characteristic ma­
trix is in the form A(A)=Al -4 _~e-"r . As shown in (Diekmann et al. 1995), a 

vector set [ao, a[, ... , ak_[] is a Jordan chain of A(A) at Ao =0 if and only if 

ao*O and 

(6.2.23) 

There follows immediately k=l. That is, the subspace P is composed of the ei­

genvectors associated with m+ 1 repeated zero eigenvalues of A . 

Each eigenvector z of A corresponding to A = 0 yields 

:~ =0 and L[ (z(O» + L2 (z( -r»=O. (6.2.24) 

Hence, z is a constant vector. Let z=[z[ ... Zm ... Zm+l+tlT, then (L[ +L2)z=0 
gives 

(6.2.25) 

Because A=O is not a root ofEq. (6.2.20), A22 + B22 is invertible and hence 

(6.2.26) 

When the vector [z[ ... zm]T is taken as the standard unit vectors in Rm respec­

tively, the rest entries in vector z can be determined. Therefore, the basis matrix 

tP can be chosen as tP=[1 tP[T]T. 
Similarly, the eigenvector z in C· of A· corresponding to the eigenvalue 

A=O satisfies dzldB=O and 4 \z(O» + L/ (z(r»=O. That is, the sub-vector of 

z yields (A22+B22)T[zm+2 ... Zm+l+tlT =0. There follows [Zm+2 ... Zm+l+tl=O 
since the matrix A22 +B22 is invertible. Thus, '11=[1 0] yields ('11, tP)=1 . 

Let z'1 E C=PtBQ, then we have z'1 =tPu+v with u=[u[ U2 ... Um+[]T EP and 

v=[v[ V2 ••• vm+[+dT EQ. Thus, we can convert Eq. (6.2.12) into 

{
U=N[ (tPu+v), 

v=Av+@·N(tPu+v)-tP·N[ (tPu+v), 
(6.2.27) 
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where the dot represents the derivative with respect to the fast time 17. Noting that 

the (m+1 )-th entry is zero in the vector N 1 ( tP u+ v), which is equal to 

9'"(O)N(tPu+v) , we have dUm+l/d17=O and dVm+l/d17=O. Because &'=um+1 +vm+l' 
it is natural to set Um+1 =&' and Vm+l =0. Thus, in terms of the original time scale, 
the dominant dynamics of the Eq. (6.2.16) yields 

[ ~ll=/(tP ~l +h([~ll»' 
. Um um 
um 

&' &' 

(6.2.28) 

according to the center manifold theorem. Here /(x,y,x(17-r),Y(17-r» is denot­

ed by /(Zq) for simplicity. 
Compared with the direct use of the center manifold reduction in the analysis 

on the Hopf bifurcation of delay differential equations, see (Hale 1977) and 

(Stepan 1989), this approach is more flexible to the high dimensional dynamic 

systems with time delays. Here, it is not necessary to check whether the original 

system of high dimensions has finite number of characteristic roots with zero real 

parts and all remaining characteristic roots have nonzero real parts. Instead, it is 

sufficient to check whether the stiff subsystem has no characteristic roots with ze­

ro real parts. In addition, the computational cost is lower because the two basis 

matrices tP and 9'" are independent of () in the present case. The approach is also 
applicable to the stability analysis of linear delay systems as seen in the next sec­

tion, since it works for various problems of local dynamics. 

6.3 Stability Analysis of an Active Suspension 

This section presents an application of the dimensional reduction in Section 6.2 to 

the quarter car model with active suspension described by Eq. (6.2.5). The objec­

tive is to find the conditions that render the system asymptotically stable. As a 

special case, the stability of an undamped quarter car model with active suspen­

sion was studied in (Palkovics and Venhovens 1992) by using the method of D­

subdivision. A detailed analysis has been made in Subsection 3.6.1 on the delay­

independent stability of a type of damped quarter car models with active suspen­

sion by using the generalized Sturm theory. For a given time delay, however, no 

analytical results are available for the stability analysis of this system with respect 

to any system parameters. Now, the approach presented in previous sections is 
used to analyze the stability of this system. 
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6.3.1 Center Manifold Reduction 

To study the stability of Eq. (6.2.5), we first introduce a fast time scale rr=t / & 

and corresponding time delay r=T/&, and transform Eq. (6.2.5) into a set of de­

lay differential equations in terms of the fast time scale 

{
X'(1]) = &[ Asox(1])+ B soY(1])+ Asdx (1]-r )], 

&'(1])=0, 

y'(1]) = Ajox(1])+ B joY(1])+ Ajd x(1]-r), 

(6.3.1) 

where the prime represents the derivative with respect to the fast time scale 1]. In 

the state space C([-r, O],R S ) with the notations used in Section 6.1, we have 

Ll =[ A~o ~ B~J, L2 =[ A~d ~ ~]. ~1 =[ m(l;u) m(co+v) ~J 

[
'" (O)(A [¢Jl (0)] B [¢J4 (0)] A [¢Jl (-r )])] 

N 1(;)= 'P3 sO ¢J2(0) + SOo¢Js(O) + sd ¢J2(-r) , N 2(;)=0.(6.3.2) 

To investigate the local dynamics of the quarter car model with active suspen­

sion on the center manifold, it is necessary to make an approximation to the func­

tion v=h(u) determined by the center manifold theorem. This work can be com­

pleted with help ofa polynomial approximation h(U)~Li+j+k=2,3hijk(O)U{u{uf . For 

the stability analysis of the trivial solution, it is sufficient to assume the form of 

h(u) as following 

where 

h(u)~[hll (O)u3 +h12 (O)u; ]u1 +[h21 (O)u3 +h22 (O)u; ]u2 

=[hll (O)&+h12 (0)&2 ]u1 +[h21 (O)&+h22 (0)&2 ]u2' 

where the coefficients aij and bij are determined as follows 

(6.3.3) 

(6.3.4) 

(6.3.5) 
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a20 =1, ai;=hi~(O), blo =_k(1+u) b20 =_k(c+v) , 
, , l+k ' l+k 

bij =-h~ (O)-uh~ (-r)-ch~ (O)-vh~ (-r) 

h~(O) chZ(O) 
+ + ,i,j=I,2. 

m(1+k) ~m(1+k) 

(6.3.6) 

6.3.2 Computation of the Approximated Center Manifold 

In what follows, attention is paid to determining the functions ht (0) in Eq. 
(6.3.3), which are characterized by a series of boundary value problems in Eq. 
(6.2.15). 

With help of MAPLE, we can readily obtain the following ordinary differential 
equations and the corresponding boundary conditions by separating the coeffi­
cients of the terms UIU~, u2uj in Eqs. (6.2.15a) and (6.2.15b). After some neces­
sary substitutions, the boundary problems are converted into the following initial 
problems 

dId I 
-hI I (0)=0 , -h21(0)=I, 
dO dO 

hil (0)=0, hil (0)=0 ; (6.3.7a) 

(6.3.7b) 

(6.3.7c) 

d 2 2 d 2 22 -h12 (0)=blO h21 (O)+bll , -h22 (0)=b20 h21 (O)+hll (0)+b21 , 
dO dO 

hl22 (0)=0, hi2 (0)=0 ; (6.3.7d) 

d 4 mk(l+u)(c+v) d 4 mk(c+v)2 
-hll (0)= , -h21 (O)=m(l+u) 
dO l+k dO l+k 
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hj4j (O)=(1+u)[mkvr + ck(C+v).,[;;;3] , 
l+k ~(1+k)3 

h4 (0)= mkv(c+v)r mur+ C(~ ck(C+v)2.,[;;;3. 
21 l+k ~' l+k v(1+k)3 

d 5 d 5 
-hll (B)=O, -h21 (B)=O , 
dB dB 

mk(l+u)(c+v) 

l+k 

(6.3.7e) 

(6.3.71) 

Though the differential equations for h1i (B), hi2 (B), hM B), and hi2 (B) are 

simple, for example, 

d 4 4 2 -h12 (B) = hlOh21 (B)+m(1+u)hll (O)+hllm(c+v) , 
dB 

(6.3.7g) 

(6.3.7h) 

the expressions of hji (0), hi2 (0), h{2 (0) , and hi2 (0) are somewhat lengthy as 

follows. 

h;i (0) ckr.,[;;;3 [(3vk(c+v)-u(1+k)] 

~= ~(1+k)5 

mk2 {(3v2 -u+cv)r 2 +2[1+u-(c+v)2]) 
+--~~----~--~--~--~~ 

2(1+k)2 

k mc2[2(c+v)2 -(1+u)]+(1+u)(1-c2m)-ur 2 
+m --~~~--~-=~--~--~----

(1+k)3 ' 

4 ckr.,[;;;3 [3kv(c+V)2 -2(1 +k)(v+cu+2uv)] 
h22 (0) ~ 

v(1+k)5 
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k 22 c+3v k 2 (2-3v 2+2u)c+2v-v3+2uv 
-m c ---+m 

(l+k)2 (l+k)2 

k (2-3mc2 )(1 +u )(c+v) 
+m ~--~-~-~ 

(l+k)2 

(6.3.7g') 

ht2(0) mkr[u(l+k)-2vk(c+v)] 2ce.,J;;;3(c+v)2 ck.J;;;3(l+u) 
--~==,~--'-----+--,=~~-,--

l+u (l+k)2 ~(l+k)5 ~(l+k)3 

kr.J;;;3 [2vk(c+V)2 -(1 +k)(v+2cu+3uv)] 
h;2 (0)= 

(l+k)2 

2ck 2 .J;;;3[(C3 +v3)+3cv(c+v)] + 3ck.J;;;3(l+u)(c+v) . (6.3.7h') 

~(1 +k)5 ~(1 +k)3 

It is now an easy task to obtain the functions ht(O). For example, we can readily 

write out 

hi (0) 0 hI (0)= b1002 
11 =, 12 2' 

I hi (0)= b200 2 
h21 (0)=0, 22 2' 

2 h2 (O)-b 0 (blO +bio)(}2 h21 (O)=b200 , 22 - 21 + 2 (6.3.8) 

In terms of the original time scale t , Eq. (6.3.5) is now in the form 

[~J=[(blO +bll e+bl2 e 2 )u j :2(b20 +b2I e+b22 e 2 )uJ ' 
(6.3.9) 

where all the coefficients are in terms of the system parameters. 
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6.3.3 Stability Analysis 

As proved in (Hale 1971), if the trivial solution u=O of the first equation in Eq. 

(6.2.12) is asymptotically stable (or unstable), so is the trivial solution x=O of 

Eq. (6.2.9). From the above analysis, it is easy to see that the trivial solution ofEq. 

(6.2.1) is asymptotically stable if the zero solution of the reduced Eq. (6.3.9) is as­

ymptotically stable. From the Routh-Hurwitz criterion, the trivial solution of Eq. 

(6.2.1) is asymptotically stable if 

(6.3.10) 

On the other hand, if the characteristic function ofEq. (6.2.1) is denoted as D(A.) , 
D(O) = p(1+u) holds for a positive number p, and D(+OO)-Hoo. Thus, if 

l+u:$;O, D(A.) has a non-negative root, which renders the system unstable. 

Therefore, the inequality 1 +u > 0 should hold true if the system is asymptotically 

stable. Note from the expressions ht(O) and bij in Eqs. (6.3.6) and (6.3.7) that 

there is a common factor 1 +u in the term of blO +b11C+b1ZCZ because 

Ibll =blO vr+ h141 (0) + C·h151 (0) , 
m(l+k) ~m(l+k) 

b blOurz (b blObzorz ) h1~ (0) cNz (0) 
=---+v r + +--;====== 

1Z 2 II 2 m(l+k) ~m(1+k)· 

(6.3.11) 

Thus, the factor l+u can be dropped from the stability conditions in Eq. (6.3.10). 

To demonstrate the effectiveness of the dimensional reduction, a comparison is 

made for the asymptotically stable regions determined by using this approach and 

the method of D-subdivision on the plane of (u, v) for the following parameters 

mb =290 kg, mt = 59 kg, ks = 16,812 N/m, kt = 190,000 N/m, 

Cs = 0 ~ 980 Ns/m, T= 0 ~ 0.4 s, (6.3.12) 

or equivalently for the following dimensionless parameters 

m=4.9153, k=I1.301, c=0~0.4453, r=0""'().1699. (6.3.13) 

Given the combination of dimensionless feedback gains 

(u,v)E[-0.95, 0.95]x[-0.95, 0.95], (6.3.14) 

we look at the following four case studies: (a) c=0.05 and r=O.OI; (b) c=0.05 

and r=0.05; (c) c=0.25 and r=0.08; (d) c=0.30 and r=0.10. 
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As shown in Fig. 6.3.1 the asymptotically stable regions determined by using 

the approach of dimensional reduction are in good agreement with those obtained 

by using the method of D-subdivision. 
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Fig. 6.3.1. Asymptotically stable region on the plane of (u, v) ; a. c=0.05 and r=O.OI, b. 
c=0.05 and r=0.05 , c. c= 0.25 and r=0.08, d. c= 0.3 and r=O.lO 

Another application of the approach of dimensional reduction is to the local bi­
furcation analysis. The approach, possibly combined with the computational tech­

niques for the normal form, see (Faria and Magalbaes 1995), enables one to com­

plete the local bifurcation analysis of the stiff-soft systems with a time delay in a 

way similar to the case of the ordinary differential equations. 

Even though many practical systems exhibit the behavior consistent with sin­

gularly perturbed differential equations, most of them are not in the standard form 

of singularly perturbed differential equations. For those systems, it is very impor­

tant to have a proper physical insight when the singular parameters and transfor­

mations are chosen. It is still an open problem whether any heuristic ideas could 

be followed for choosing the proper small parameters and transformations when 

the physical insight is not obvious. 
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The study on nonlinear delayed dynamic systems is a tough problem. Only a few 
theoretical results have been available for those that can model engineering sys­

tems. Among the available results, the existence and determination of periodic 

motions of nonlinear delayed dynamic systems have drawn great attention. 
In theory, the existence of periodic motions can be studied by using the fixed­

point theorems and the Lyapunov methods, see, for example, (Hale 1977) and (Li 

and Wen 1987). A very skilful approach proposed by (Kaplan and Yorke 1974) 

has been developed over the past two decades to construct the periodic solutions 

of delay differential equations via a sort of ordinary differential equations, see 
(Liu and Li 1996). These studies, however, are still limited to very simple delay 

differential equations. In practice, the periodic motions have to be determined by 

using approximate techniques, such as the Poincare-Lindstedt approach in (Casal 
and Freeman 1980), the method of harmonic balancing in (McDonald 1995), and 

the method of multiple scales in (Hu et al. 1998a). 
Physically speaking, there are two important causes for the emergence of a 

periodic motion if the system is nonlinear. One is the well-known Hopf bifurca­
tion at the equilibrium of an autonomous system, and the other is the either exter­
nal or parametric periodic excitation in a non-autonomous system. This chapter 
will discuss the periodic motions of nonlinear delayed dynamic systems owing to 

these two sources respectively. 

7.1 The Hopf Bifurcation of Autonomous Systems 

As well known in the case of ordinary differential equations, one of the simplest 

ways in which a non-constant periodic solution emerges is through the Hop! bifur­

cation. This occurs when, as a real parameter a in the equation is passing through 

a critical value ao, a pair of conjugate eigenvalues of the linear operator (namely 

a pair of conjugate characteristic roots of the characteristic quasi-polynomial) is 

crossing the imaginary axis on complex plane from the left to the right. Generally 
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speaking, the theorem of Hopf bifurcation assumes only the local existence of 

periodic solutions when they arise. This case will be discussed later. 

To undergo a Hopf bifurcation, the dynamic system governed by a set of ordi­

nary differential equations must be at least two-dimensional. However, a first or­

der delay differential equation with a single time delay may undergo the Hopf bi­

furcation or more complicated bifurcations such as the Hopf-Hopfbifurcation, and 

even exhibits chaotic behaviour. For a single-degree-of-freedom system with de­

layed feedback control, it does undergo complicated bifurcations, see, for exam­

ple, (Shayer and Campbell 2000) and the references therein. 

The theorem of Hopf bifurcations enables one to obtain the local existence of a 

periodic solution. To establish the global existence, it is often to resort to some 

kind of fixed point theorems associated with the mapping A defined in a cone 

shaped subset K in the state space C. Here, the cone K plays the role of the 

Poincare section and the mapping A is usually similar to the Poincare mapping 

for ordinary differential equations. A comprehensive description of this method is 

beyond the scope of this book. It is referred to (Hale 1977), (Kuang 1993) and 

(Hale and Lunel1993). 

7.1.1 Theory of the Hopf Bifurcations 

As proved in (Hale 1977) or (Hale and Lunel 1993), a general theory is available 

for the Hopf bifurcation of delay differential equations. The theory is presented 

hereinafter for a one-parameter family of nonlinear delay differential equations 

x(t)= /(a,x,) , (7.1.1) 

where x,(B)=x(t+B) is defined for BE[-T, 0], /(a,t/J) has the continuous fust 

and second derivatives with respect to a and t/J for aER and t/JEC([ -T, O),W), 

where C=C([-T, O),W) is equipped with the norm 11t/Jllc=suPOEl-r.Olllt/J(B)11 as be­

fore. Assume that /(a,O)=O holds for all aER. That is, the system has a fixed 

trivial solution x=o for all values of a. Furthermore, define a linear operator 

La: Rx C ~ R n with parameter a by 

(7.1.2) 

where D¢/(a,O) is the Jacobian of /(a,t/J) with respect to t/J at t/J=O and can be 

expressed by Lat/J= eJd,,(B)]t/J(B) for some bounded variation matrix function 

" . In addition, define 
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(7.1.3) 

for the nonlinear part of the right-hand side of Eq. (7.1.1) and assume that 

liN a;llc =o(II;llc) as 11;llc ~O . 
Suppose that the characteristic root A(a) of La has a continuous derivative 

A'(a) with respect to a. Given a specific value a o , say, a o =0 without loss of 

generality, of a, the trivial solution x=O is asymptotically stable for a o if all the 

eigenvalues of Lao have negative real parts. If there exist any eigenvalues with 

positive real roots, then the trivial solution x=O is unstable. 

In what follows, the trivial solution x=O of Eq. (7.1.1) is assumed to undergo 

an instability when the parameter a increases and arrives at a o =0. That is, a pair 

of conjugate complex eigenvalues of La goes from the open left half-plane into 

the open right half-plane as a increases and passes through a o. After such a tran­

sition, an arbitrary small disturbance near the trivial solution may evolve into an 

oscillatory solution. 

More precisely, a theorem is presented on the basis of following two assump­

tions. 

(HI) For a small a, the linear operator La has a pair of simple conjugate 

imaginary eigenvalues y(a)±im(a), which yields 

y(O)=O, mo =m(O)*O, (7.1.4) 

and Lo has no other pure imaginary eigenvalues which are multiples of imo . 

(H2) The pair of conjugate eigenvalues is crossing the imaginary axis at a=O, 

namely 

y'(O)*O. (7.1.5) 

Theorem 7.1.1. Suppose that I(a,;) has the first two continuous derivatives 

with respect to a and;, and F(a,O)=O holds for all aER. In addition, assume 

that the hypotheses (HI) and (H2) are true. Then there are constants ~o >0, ao >0, 

80 >0, continuously differentiable functions a( ~)ER, m( ~)ER, and an 

m(~)-periodicfunction x'(~) in ~ for 1~llc<~o suchthat 

(7.1.6a) 

is a solution ofEq. (7.1.1) with the following decompositions 

(7.1.6b) 
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where y'(~)=(~,O)T+o(I~lle) and z~(~)=o(I~Iic) as 1~lIe~O. Furthermore, for 

1~lIe<~o and IlO-(2n/lOo)I<00, every lO-periodic solution of Eq. (7.1.1) with 

IIx/lle <00 must be of this type except for a translation in phase. 

Similar to the theory of the Hopf bifurcations of ordinary differential equations, 

Theorem 7.7.1 indicates two important points. One is that the existence of the 

Hopf bifurcation is governed by the properties of the eigenvalues of the linear op­

erator. The other is that the asymptotic behaviour of the non-constant bifurcating 

periodic solution is dominated by its projection on the center manifold of original 

system. 

Example 7.1.1 Consider the Hopf bifurcation of a nonlinear delayed system, 

the characteristic function of the linearlized system of which reads 

D(..1,1")=P(..1)+Q(..1)e-AT , (7.1. 7) 

where P(..1) and Q(..1) are two polynomials in A, with degP(..1)=n>degQ(..1). 
Now, we look for the necessary condition of the Hopf bifurcation when the time 

delay 1" is taken as the bifurcation parameter. 

As discussed in Subsection 3.5.1, F(lO)=IP(ilOt -IQ(ilO)12 is a 2n -th order 

polynomial in wand contains only the terms of even orders. If D(..1,O) is Hur­

witz stable and F(lO) has a unique pair of simple real roots ±lOo, we can deter­

mine the minimal time delay 1"=T 0 from 

QR (lOo)p/ (lOo)- PR (lOo)Q/ (lOo) 

QR 2(lOO)+Q/ \lOo) 

PR (lOO)QR (lOo)+Q/ (lOo)p/ (lOo) 
2 2 QR (lOo)+Q/ (lOo) 

(7.1.8a) 

(7.1.8b) 

In the case of F'(lOo):;tO, the nonlinear system of concern undergoes a Hopf bi­

furcation at 1"=1"0 due to the following two facts. First, all the characteristic roots 

of the quasi-polynomial D(..1,1") stay on the open left half-plane for 0~1"<1"0. 

Second, the characteristic function D(..1,1"o) has a pair of conjugate pure imagi­

nary roots .,11,2 =±ilOo and the condition dRe(~,2 )/d 1":;t0 holds at 1"=1"0 since 

Theorem 3.5.2 states that sgn[dRe(~,2)/d1"IT=To ]=sgn[F'(lOo)]. If F(lO) has two 

or more than two pairs of simple real roots, the system may undergo more compli­

cated bifurcation. 

For example, the four-wheel-steering vehicle discussed in Subsection 3.6.2 un­

dergoes the Hopf bifurcation in the vicinity of the origin of the phase space when 

the parameter pair (L, U) falls into the given region 
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Li={(L,U)11O:S;L:S;120, 5:S;U :S;40} , (7.1.9) 

since there is a proper value of time delay for each pair (L, U) so that the two con­

ditions of the Hopfbifurcation hold true, and the corresponding polynomial F(m) 

has exactly one pair of real roots ±m at such values of parameters. 

To make a detailed analysis on the dynamics of delay differential equations on 

the center manifold, a similar procedure can be followed as done for ordinary dif­

ferential equations. In the next subsection, attention will be paid to the decompo­

sition of the bifurcating solution, though it has been presented in Section 6.1 in 

terms of real functions. 

7.1.2 Decomposition of Bifurcating Solution 

Suppose that Eq. (7.1.1) undergoes the Hopfbifurcation at Z'=Z'0. More precisely, 

let a=Z'-Z'o be the bifurcation parameter and assume that a pair of conjugate sim­

ple eigenvalues A(a) and l(a) of the linearized equation at x=O is crossing the 

imaginary axis as a passes through zero, and no other eigenvalues stay on the 

imaginary axis. 

Following Section 6.1, it is possible to decompose the system dynamics near 

the Hopfbifurcation into two parts. One governs the system dynamics on the cen­

ter manifold, and the other is the complementary part, which plays a less impor­

tant role in understanding system dynamics. Now we present the decomposition 

procedure in a more direct way. In fact, we can recast Eq. (7.1.1) as 

or equivalently 

where 

8E[-Z', 0), 

8=0, 

{
O, 8E[ -Z', 0), 

8(8)= 
I, 8=0. 

In the sense of (A:If/,t/J)=(If/,Aat/J) , the adjoint operator A: of A reads 

SE(O, Z'], 

S=o, 

(7.1.10) 

(7.1.11) 

(7.1.12a) 

(7.1.12b) 
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where the bilinear form is given as following 

(7.1.13) 

Assume that , and ,- are the eigenvectors of Aa and A; corresponding to 

A(a) so that 

(,-, ,)-1=(,-, ()=O, (7.1.14) 

where "' represents the complex conjugate of , . As the real solutions of Eq. 

(7.1.10) are of concern, we decompose the bifurcating solution XI into a real­

valued summation 

XI =a(t)( +a(t)( +v(t) , (,-, v)=O. (7.1.15) 

Then, we have 

. - - dv -
[ti-A(a)a]( +[a-A(a)a]( +-=Aav+@Na(a(t)(+a(t)(+v(t)). (7.1.16) 

dt 

From Eq. (7.1.14) and 

(,-, dv)=~(,_ ,v)=O, (,- ,Aav)=(A:,- ,v)= A(a)(,- ,v)=O, (7.1.17) 
dt dt 

we have 

as well as a similar equation for a , and 

dv -
-=Aa v+[@Na(a(t)(+a(t)( +v(t)) 
dt (7.1.18b) 

-(,-Na(a' +a( +v)lo=o)( -(,-Na(a' +a( +v)IB=O)(]. 

When the linearized equation of Eq. (7.1.11) at x=O has a pair of complex­

conjugate simple eigenvalues A(a) and I(a) while a passing through zero, and 

all the other eigenvalues remain on the open left-half complex plane, we can prove 

that Ilvlle ~O as t~+oo. Thus, the complementary part v(t) plays a simple role 

in the local dynamics analysis. 
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7.1.3 Bifurcating Solutions in Normal Form 

In a neighbourhood of the origin of R", there exists v=g(a,a,a) for Eq. (7.1.18) 

according to the center manifold theorem. Once the function g(a,a,a) is found, 

the delay differential equation can be transformed into a planar differential equa­

tion free of time delays. This reduction enables one to determine the direction of 

the Hopf bifurcation, namely, to answer whether the bifurcating periodic solution 

exists locally for a>ao=O (supercritical Hop/biforcation) or a<ao (subcritical 
Hop/bifurcation), as well as the stability of the bifurcating solutions. The problem 

is that it is difficult to determine the center manifold in general. As discussed in 

Section 6.3, a series of boundary problems of ordinary differential equations have 

to be solved first so as to achieve the expression of the flow on the center mani­

fold, and then the normal form of the reduced system has to be calculated. Hence, 

a lot of computational efforts are required in this procedure. In (Faria and Magal­

haes 1995), however, a method was proposed for the reduced differential equation 

on the center manifold in the normal form without computing the manifold. A 

similar method to estimate the direction of Hopf bifurcation was presented in 

(Stech 1985) by using the Lyapunov-Schmidt reduction. 

Following the work in (Faria and Magalhaes 1995), we have the reduced ordi-

nary differential equation on the center manifold in the polar coordinates (p,';) 

{
p=aY'(0)p+ K2P3 + ... +K2Pp2P+l +O(apl(p,a)i+I(p,a)2P+21), 

~=-m+O(la,pl)· 
(7.1.19) 

Because y'(O}~O holds, the sign of constant K =K2 governs the direction of the 

Hopfbifurcation. If y'(O»O, the condition K>O corresponds to a subcritical bi­

furcation and K <0 to a supercritical bifurcation. For a scalar delay differential 

equation in C([-r, O],R) in the form ofEq. (7.1.1), (Faria and Magalhaes 1995) 

gave the expression for K as following 

1 
K=Re[ . (B 1-Lo «()e WJ() (2,1,,0,0) 

B B B B 
(1,1,0,0) (1,0,1,0) + (2,0,0,0) (0,1,0,1»] (7,1.20) 

Lo(1) 2im-Lo(e 2WJ()' 

where the constants B(2,l,O,O), B(l,l,O,O) and so on are the coefficients in the follow­

ing expansion 

/(O,xleil<J() +x2e·il<J() +x3 1+x4e 2i l<J() 

=B(2,0,0,0)XI2 + B(1,1,0,0)X1X 2 + B(1,0,1,0)X1X 3 + B(0,1,0,1)X2 X 4 

+ B(2,1,0,0)X; x2 + ... 

(7.1.21) 
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If K *0 , the periodic solution, bifurcating from the origin p=O at a=O, of the 
delay differential equation reads 

{P(t)=~-Y'ia +O(a), 

S'(t)=-mt+O(M)· 

(7.1.22) 

For the non-constant periodic solution of Eq. (7.l.l), main results are as follows. 
Theorem 7.1.2 Assume that the hypotheses (HI) and (H2) are true for Eq. 

(7.1.1). If y'(O)K<O (or y'(O)K>O), a unique non-trivial periodic solution exists 
in the neighbourhood of p=O for a>O (or a<O), and no non-trivial periodic 
solution exists for a<O (or a>O). The corresponding non-trivial periodic solu­

tion is asymptotically stable if K <0 and unstable if K>O. 
If K =0, the normal form has to be calculated up to the first non-vanishing co­

efficients K2p in order to study the system dynamics. 
In the following example, an outline for the Hopf bifurcation of a delay differ­

ential equation is given to demonstrate the above process. For detailed analysis, it 
is referred to (Hale and Lunel1993) and (Faria and Magalhaes 1995). 

Example 7.1.2 Study the Hopf bifurcation and the corresponding periodic so­
lution of the well-known Wright equation 

x(t)=ax(t-l)[1 +x(t)], XER , (7.1.23) 

at x=o with the variation of parameter a . 
The characteristic quasi-polynomial A-ae-A of the linearized delay differential 

equation has a pair of simple imaginary roots ±im if and only if a=ak and 
m=mk with 

n 
mk=-+kn 

2 
for k=0,1,2,.·· (7.1.24) 

The implicit function theorem indicates that the characteristic quasi-polynomial 

has a unique pair of conjugate complex roots A(a)and A(a) close to imk and 
-imk for a in the neighbourhood of ak, and that for A(a)=y(a)±im(a) with 

y(a),m(a)ER , we have 

(7.1.25) 

Thus, Eq. (7.1.23) undergoes the Hopfbifurcation at a=ak , k=0,1,2,.··. 
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Now, we look at the bifurcating periodic solutions close to x=O and a=ak, 
k=0,1,2,.··. Let a=a-ak' The right-hand side ofEq. (7.1.23), together with the 
corresponding linear and nonlinear operators, is in the form 

I(a,¢)=(ak +a)¢(O)¢( -1) , 

Direct computation gives 

1(0 x eiWkB +x e-iWkB +x l+x e2iWkB) , I 2 3 4 

( )( -iWk iWk 1 -2iwk ) =ak XI +X2 +X3 +X4 xle +x2e +X3 +x4e 

= ak [( _1)k+1 ixl2 +OXIX2 +(1 +( _1)k+1 i)x] X3 

+( -1 +( _1)k i)x2x4 +Ox~ x2 + ... ]. 

(7.1.26a) 

(7.1.26b) 

(7.1.26c) 

(7.1.27) 

Thus, the non-trivial periodic solution on the center manifold is asymptotically 

stable since we have 

K 
OJk k 

----"---,2,-[(-1) -3OJk]<0, k=0,1,2,.·· 
5(1 +OJk ) 

(7.1.28) 

Theorem 7.1.2 implies that Eq. (7.1.23) undergoes the Hopfbifurcation, which is 
supercritical if k is odd and is subcritical if k is even. The periodic solution in 

the polar coordinates (p,~) is in the form 

(7.1.29) 

As noted in (Hale 1977), there exist the characteristic roots with positive real 

part at the critical values a=ak, k=I,2,.·· for the Hopf bifurcation of the Wright 

equation so that the bifurcating periodic solutions, albeit asymptotically stable in 

the center manifold, are unstable in the state space. Only at a=ao =-rr/2, the 

characteristic quasi-polynomial has a unique pair of pure simple imaginary roots 

and the other characteristic roots have negative real parts such that the periodic 

solution arising from the subcritical Hopfbifurcation at a=-rrl2 is asymptotically 

stable. This stable periodic solution on the center manifold reads 
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lOla + 1t121 I 1t1 p(t)= +O( a+-), 
31t-2 2 

q(t)=-%t+o(~la+%I)· 
(7.1.30) 

In the state space, the corresponding periodic solution of the Wright equation, see 
(Faria and Magalhaes 1995), is as following 

H1t1 lOla + 1t121 1t I 1t1 x(t)=2p(t)cosq(t)+O( a+- )=2 cos( --t)+O( a+- ) .(7.1.31) 
2 31t-2 2 2 

7.2 Computation of Bifurcating Periodic Solutions 

There are basically two kinds of approaches available for constructing the bifur­
cating periodic solutions of a delay differential equation. One kind is based on the 
center manifold theorem in Section 7.1, where the solution is first projected onto 
the center manifold and then is determined in the form of power series. The other 
kind is the power series approximation in the state space with respect to a properly 
selected small parameter. This kind of approaches has two routines to follow. The 
first is the Fredholm alternative (Iooss and Joseph 1980), where the solution is 
expanded into the power series first and then is projected onto the center manifold 
so as to determine the power series easily. The second routine includes the well­
known perturbation method and its varieties, such as the averaging method, the 
method of multiple scales, and so forth. This section presents respectively the 
method of Fredholm alternative and the method of perturbation, together with the 
their applications to the Wright equation discussed in Subsection 7.1.3. 

7.2.1 Method of the Fredholm Alternative 

We first write the delay differential equation as a functional differential equation 

on the Banach space e([-I, O],Rn) in the form 

(7.2.1 ) 

Let u(t)=x,«(}) and assume that Eq. (7.2.1) undergoes the Hopf bifurcation at 

a=O and the frequency of bifurcating periodic solution is m(&"), where &" is a 
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small positive parameter, characterizing the small deviation of a from zero or the 

small amplitude of periodic solution bifurcating just from the trivial solution. 
The objective of this subsection is to construct the bifurcating periodic solution. 

Ifwe introduce a new time scale s=w(&)t, the task becomes to determine a 2n:­

periodic solution u(s), which yields 

du 
w(&) ds = /(a(&),u) , (7.2.2a) 

U(s,&)=u(s+2n:,&) , u(s,O)=O, a(O)=O, w(O)=wo. (7.2.2b) 

We expand the solution of concern as 

(7.2.3) 

then the coefficients uj(s), a j and w j , j=I,2, ... need to be determined. For this 

purpose, substituting Eq. (7.2.3) into Eq. (7.2.2) and equating the same power of 

& , we have a set of linear differential equations 

where 

whereas 

dU2 dU1 J Ou3 -3wl -+3aJua(0Iu2)-3w2-
ds ds 

+3adua(0Iul)+3aJuua(0Iullul)+3a)2/uaa(0Iul) 

+3/uu (0Iu1Iu2 )+ /uuu(0Iu1Iu1Iu1 )=0, 

(7.2.4a) 

(7.2.4b) 

(7.2.4c) 

(7.2.5) 

(7.2.6a) 

(7.2.6b) 
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are a linear operator and a bilinear operator carrying vectors into vectors, respec­

tively. 

The notations fu(alx) , fuu(alxly) , fuuu(alxlylz) , ... here are in fact the Ga­
teaux derivatives, see, (Debnath and Mikusinski 1999). What follows is the exam­

ple to show how to compute the Gateaux derivatives of the right-hand side of a 

delay differential equation. 

Example 7.2.1 Consider again the Wright equation in the form 

Note that 

we have 

dx(t+t9) 

dt 

x(t)=-(~+a)x(t-l)[I+x(t)] . 
2 

{

dx(t+t9) 
dt9 ' 

-(%+a)x(t-l)[1 +x(t)], 

t9E[-I, 0), 

19=0, 

f(a,¢)= dt9' {

d¢ 
t9E[-I, 0), 

-(~+a)¢( -1)[1 +¢(O)], 19=0, 

(7.2.7) 

(7.2.8) 

(7.2.9) 

if Eq. (7.2.7) is in the form of Eq. (7.2.1) on the Banach space e([-I, O],R). 

From 

we have 

{
O, 

fua(Olx)= -x(-I), 

t9E[-I, 0), 

19=0, 

t9E[-I, 0), 

19=0, 

(7.2. 11 a) 

(7.2. 11 b) 
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{
o, 

y)= n -"2[ x( -l)y(O)+ x(O)y( -1)], 

BE[-I, 0), 

B=O. 
(7.2.11c) 

Now, we discuss how to solve Eq. (7.2.4), each equation of which is in a uni­

fied form as following 

(Jou)(s)=g(s) , g(s)=g(s+2n) . (7.2.l2) 

In general, it is impossible to determine any solution of Eq. (7.2.l2) unless func­

tion g(s) yields some conditions, each of which is usually referred to as a Fred­
holm alternative. To introduce the concept of the Fredholm alternative, denote by 

Ph and P;~ the subspace of C([ -r, O],Rn) composed of all continuous 2n­
periodic functions in s and the subspace of all continuous 2n -periodic functions 

in the dual space of e([ -r, O],R"), respectively. Note that the functions in P2~ 

are those in sE[-r, 0], and the functions in P;~ are in SE[O, r], we define a new 

bilinear form 

I ih [a,b]=- (a(s),b(s))ods, 
2n 0 

(7.2.l3) 

where (-,,)0 is the bilinear form in the usual sense at the bifurcating point a=O. 
The adjoint operator J; of J o in the sense of [J;I{I,¢]=[I{I,Jo¢] reads 

, d , 
Jo=OJo-+Ao· 

ds 
(7.2.l4) 

At the bifurcating point a=O, we solve the eigenvalue problem fu(OI(o)=iwo(o 
and its adjoint eigenvalue problem f: (01(; )=iOJo(; under the condition 

((;,(0)0-1=((;,(0)0=0. Let X(s)= eiS(o,then X and i are in P2n andsatisty 

(7.2.1Sa) 

Similarly, we can also find a X'(s)= e-is(; EP;J[ such that 

J~x' =J~X' =0. (7.2.lSb) 

With this vector X' (s) , we have 

(7.2.l6a) 

if we define 

5=[ X', u] . (7.2.l6b) 
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As shown in (Debnath and Mikusinski 1999) or (Zeidler 1995), we have the theo­
rem of Fredholm alternative as following. 

Theorem 7.2.1 Equation (7.2.12) is solvable if and only if 

[x· ,g ]=Lf ,g ]=0. (7.2.17) 

When g(s) is a real function, the solvability condition is given by two real 
equations. Then, a j and OJ j in Eq. (7.2.3) can be selected through condition 
(7.2.17) so that each equation in Eq. (7.2.4) is solvable. 

The solution UI ofEq. (7.2.4a) is in the form UI =ceis(O +ce-is(o. As the origin 

of s is indeterminate, we may just as well use another transformation S .... H+§ so 

that cei6 =c is real-valued. Without loss of generality, we have 

(7.2.18) 

where c=l is determined from Eq. (7.2.16a). According to the defmitions, we 

have [X·,X] .... l=[X·,X]=O because «(~,(o)o .... l=«(~lo)o=o. Thus, we obtain 

[X· ,Jua(0Ii)]=[(~,e-2is !ua(OI(o)]=O, and [X· '/uu(Olx+ ilx+ i)]=O. As a result, 
the solvability condition (7.2.4b) gives 

(7.2.19) 

By differentiating the eigenvalue problem !u(a/(a)=A.(a with respect to a and 
evaluating the result at a=O, we have 

(7.2.20) 

where the prime represents the derivative respect to a. According to the Fred­

holm alternatives, the above differential equation is solvable if and only if 

(7.2.21) 

As the theorem of Hopf bifurcations assumes A.'(0):;t0, we have a l =0 and 

OJI =0 . By using mathematical induction in (looss and Joseph 1980), we show that 

a 2j+1 =0, OJ2j+1 =0, j=O, 1,2, ... (7.2.22) 

This fact, together with Eq. (7.2.3), indicates that the bifurcation parameter a and 

the vibrating frequency OJ are in the following form 

(7.2.23) 
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where the coefficients a 2 and (02 can be determined through the following con­

dition 

3[ -i(02 +a2A.'(O)]+3[.l*, luu (Ol.l+ ilu2 )] 

+[.l*, I uuu (Ol.l+ il.l+ il.l+ i)]=O. 

7.2.2 Stability of Bifurcating Periodic Solutions 

(7.2.24) 

Let u(s) with s=(O(&)1 be the bifurcating periodic solution of Eq. (7.2.2) and 

v(t) be a small disturbance of u such that u(s,&)+v(/) also satisfies Eq. (7.2.2). 

Then, v(/) yields 

dv 
-= I(a,u+v)- I(a,u). 
dl 

(7.2.25) 

The following linearized differential equation governs the stability of the bifur­

cating solution 

dv 
-= lu(a(&),u(s,&)lv), 
dt 

(7.2.26) 

where lu(a(&),u(s,&)lv) is periodic in S • On the basis of the Floquet theory, let 

v(/)=ePSc;;(s), s=(O(&)/, C;;(s)=C;;(s+21t) for all SER. (7.2.27) 

Then, we have 

(7.2.28) 

A similar procedure used in the previous subsection gives the following theorem. 

Theorem 7.2.2 For sufficiently small parameter &, the following estimations 

are true 

P(&)= -a'(&) , p=Rd'(O). (7.2.29) 

Thus, the bifurcating periodic solution u is asymptotically stable if a2P>O and 

unstable if a2P<O . 
The proof of this theorem is referred to, for example, (looss and Joseph 1980). 

Example 7.2.2 Consider again the Wright equation in the form of Eq. (7.2.7). 

Example 7.1.2 indicates that the trivial solution of the Wright equation undergoes 

the Hopf bifurcation at a=O and the frequency of the bifurcating periodic solu­

tion is (00 =1t/2 . In what follows, the method of Fredholm alternative is used to 
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determine the approximate periodic solution. On the Banach space C([ -1, O],R) , 

the following notations are defined first 

[u(t)](O)=Xt (O)=x(t+O), 

n {O, OE[ -1, 0), 
[eNa¢](O)=(2"+a) -¢(0)¢(-1), 0=0. 

Then, Eq. (7.2.8) can be written as 

du 
-=Aau+eNa(u) . 
dt 

The adjoint operator A:, on C([O, 1],R), of Aa, is given in the form 

OE(O, 1], 

0=0, 

with respect to the inner product 

(If/'¢)a =1f/(O)¢(O)-(2:+a ) flf/(s+1)¢(s)ds. 
2 11 

Solving the dual eigenvalue problems 

gives 

;- (Ll) (. nO) ;-* (Ll) 1 ( . nO) 
':>0 u =exp 12 , ':>0 u 1+i(n/2) exp -12 ' 

and 

(7.2.30a) 

(7.2.30b) 

(7.2.30c) 

(7.2.31) 

(7.2.32) 

(7.2.33) 

(7.2.35a) 

(7.2.35b) 

Now we use the Fredholm alternative to compute the power series of the bifur­

cating periodic solution. Because a l =0 and OJ1 =0 , we have 
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[u] (s)](O)=So (O)eis +fo (O)e-is , 

Wo dU2 = /.(0Iu2)+e2is f .• (0Isolso)+e-2is / •• (Olfo Ifo) . 
ds 

Equation (7.2.37) indicates that U2 is in the form 

[u2 (s)](0)=S2 (0)e 2is +f2(0)e-2iS . 

Substituting Eq. (7.2.38) into Eq. (7.2.37), we have 

(7.2.36) 

(7.2.37) 

(7.2.38) 

~2ie2iSS2(0)-2ie-2isf2(0)]=e2ist2(0)+e-2ist2(0), OE[-I, 0), (7.2.39a) 

and 

2ie 2is S2 (0)-2ie -2is f2 (0) 

=-[ e2is S2 (_I)+e-2is f2 (-1)]-2[ e2is So (-I)+e -2is foe -1)]. 
(7.2.39b) 

Equation (7.2.39a) gives t2 (0)=i1tS2 (0) . So, we have S2(0)=S2(0)e i1t8 and 

S2(-1)=-S2(0). Hence, we find the coefficient S2(0) in [U2(S)](0) 

S2(0)= 4-2i e iml . (7.2.40) 
5 

Furthermore, straightforward computation gives 

_. 1 '(0)--[ * f. (01 *1)] 1t[(2-31t)-(6+1t)i] 
WJ2+a2.IL - X,.. 1'+1' u2 2' 

1O(1+1t 14) 

, * 21t+4i 
/!, (0)=[1' ,J.a (011')]=--2 *0. 

4+1t 

(7.2.41a) 

(7.2.41b) 

By the way, the implicit differentiation can also lead to Eq. (7.2.41b). Solving Eq. 

(7.2.41) for a2 and W 2 gives 

31t-2 2 
a2 =-5 ->0 , W 2 =-5 . (7.2.42) 

In summary, the bifurcating periodic solution ofEq. (7.2.7) at a=O reads 

2 4-2i 2· 3 
x(t)=[u(wt)](0)=2&coswt+& Re(-e Imt)+O(& ) 

5 
2&2 

=2&coswt+-(2cos2wt+sin2wt)+0(&3), 
5 

&2 4 31t-2 2 4 
a(&)=-a2 +0(& )=--& +0(& ), 

2 10 

(7.2.43a) 

(7.2.43b) 
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If a is taken as the bifurcation parameter, we can express [; and (f) as 

~oa 
[;~ --
~ 311:-2' 

11: 2a 
(f)~----

2 311:-2' 

so that the solution in Eq. (7.2.43a) reads 

~oa 11: 2a 
x(t)~2 --cos[(----)t] 

311:-2 2 311:-2 
4a 4a. 4a 

+--{2cos[ (1I:---)t]+sm[ (1I:---)t]). 
311:-2 311:-2 311:-2 

(7.2.43c) 

(7.2.44) 

(7.2.45) 

The bifurcating periodic solution at a=O is asymptotically stable since Eqs. 

(7.2.41b) and (7.2.42) give p=Rd'(O»O and a 2 >0. Obviously, Eq. (7.2.45) of­

fers a more accurate approximation than Eq. (7.1.31) for the solution of the Wright 
equation. 

7.2.3 Perturbation Method 

A large number of perturbation methods have been well developed to deal with 
the engineering systems governed by nonlinear ordinary differential equations. In 
this subsection, the perturbation method is briefly described only for a type of 
functional differential equations. It is necessary to mention that the secular terms 
may also appear as in the case of ordinary differential equations. If this is the case, 

they must be eliminated from the functional differential equation of concern to en­
sure that the equation has a uniformly bounded solution. For this purpose, it is 

usually to re-scale the time before the perturbation method is applied. 

To demonstrate the perturbation method as simple as possible, we consider a 

second order scalar autonomous delay differential equation 

{
X(t)=F(Xt ,Xt ,a), 

xt(B)=x(t+B), x/B)=x(t+B), BE[-r, O], 
(7.2.46) 

with sufficiently smooth right-hand side and r>O, though the following procedure 

and the results are valid for more general scalar autonomous delay differential 

equations of higher orders. 

Assume that F(O,O,a)=O holds for all parameter values of a and there is an 

a o such that for a<ao all the roots of the characteristic quasi-polynomial associ-
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ated with the linearized operator stay on the open left half-plane, whereas a unique 
pair of roots of the characteristic quasi-polynomial is crossing the imaginary axis 
at ±iOJo when a=ao. If this is the case, Eq. (7.2.46) undergoes the Hopfbifurca­
tion. 

To construct the bifurcating periodic solution, we first introduce a new time a 

through t=c(a)a with c(ao)=1 such that the period of solution is fixed for the 

new time a . Let y(a)=x(ca) , then Eq. (7.2.46) is equivalent to 

{yca)=c 2 F(y", c-1y" ,a), 

y,,(B)=y(a+B), y,,(B)=y(a+B), BE[-r/c, 0], 
(7.2.47) 

where the dot now represents the derivative respect to the new time a. At a=ao , 
the linearlized differential equation has the solution y(a)=ecosOJoa, where e is 

related to a and 6'la=ao =0. Now, we look for the periodic solution ofEq. (7.2.47) 
in the form (up to time shift) 

(7.2.48) 

for small lei. Because the change 6'~-6' is equivalent to a phase shift of the os­
cillation by projection, which preserves the invariance of the cycle and hence does 

not change the values of a and c. Thus, we need to study the following forms of 

a and c 

(7.2.49a) 

(7.2.49b) 

Substituting Eqs. (7.2.48) and (7.2.49) into Eq. (7.2.47), expanding the right-hand 
side in terms of 6' and equating the same powers of 6' , we have a series of equa­
tions with respect to y j (a) that can be solved successively as in the case of ordi­
nary differential equations. The coefficients cj and a j are chosen such that no 
secular terms are involved. The periodic solution of Eq. (7.2.46) can be achieved 

by using the following scheme involving indefinite steps 

(7.2.50) 

As for the Hopfbifurcation, we have the following theorem, see (Kolmanovskii 

and Myshkis 1999). 

Theorem 7.2.3 Assume that the conditions associated with the characteristic 

quasi-polynomial that governs the existence of Hopf bifurcation hold, and that 

a 2 *0 holds in Eq. (7.2.49b). If a 2 >0 (or a 2 <0) and a increases (or decreases) 

and passes through a=ao, then exactly one periodic solution (up to the time shift) 
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of Eq. (7.2.46) occurs near the trivial solution of the same equation. This solution 

is asymptotically stable (unstable), and has an asymptotic representation as 

a~a; (or a~ao) 

~-a OJ 
x(t)= __ 0 cos_o t+O(la-aol) , 

a 2 c 
(7.2.5la) 

(7.2.5lb) 

In addition, any solution ofEq. (7.2.45) on the entire t -axis and sufficiently close 

to zero tends asymptotically to either zero or the periodic solution as t~+CX) and 

t~-CX) . 

Example 7.2.3 Consider again the Wright equation in the form 

x(t)=-bx(t-l)[l+x(t)] . (7.2.52) 

As shown in Example 7.1.2, Eq. (7.2.52) undergoes a Hopfbifurcation at b=1[/2 

and the bifurcating periodic solution is asymptotically stable. We are now interest­

ed in an explicit approximate form of the bifurcating periodic solution. It is easy to 

verifY that the periodic solution of the linearized equation of Eq. (7.2.52) is in the 

form 

1[ 
XI (t)=acos(-t+tp) , 

2 
(7.2.53) 

where a and tp are two constants. Thus, we look for the periodic solution ofEq. 

(7.2.52) in the following form 

(7.2.54a) 

(7.2.54b) 

1[ 2 4 b=-+b & +b & + ... 2 2 4 ' 
(7.2.54c) 

for a small positive parameter & • We have 

1[ 2 4 -I x(t-I)=&cos-[a-(1+c2& +c4& + ... ) ] 
2 

+&2 x2 (a-(1 +C2 &2 +C4&4 + ... )-1) (7.2.55) 

+&3 X3 (a-(1 +C2&2 +C4&4 + ... )-1 )+ ... 
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smce t-l=cO"-1=c(0"-c-1). Substituting Eqs. (7.2.54) and (7.2.55) into Eq. 

(7.2.52) and equating the coefficients at equal powers of & give the following 
equations. 

. () 1t ( 1) 1t . 1t0" 1t0" X 0" =--x 0"- --sm-cos-
2 22 22 2' 

X3 (0")=-%X3 (0"-1)-1 X2 (O"-l)cos 1t; +X2 (O")sin n; ] 
1t 2 1t 0" 1t . 1t 0" . 1t 0" 

--c cos---c sm--b sm-. 
4 2 222 2 2 2 

Solving Eq. (7.2.56a), we have 

( ) 1 I . 
x2 0" =-COs1tO"+-sm1tO". 

5 10 

Substituting Eq. (7.2.57) into Eq. (7.2.56b) yields 

. 1t 1t 1t 2 1t0" 31t 1t . 1t0" 
x (O")=--x (O"-I)+(---c )cos-+(---c -b )sm-

3 23 404 2 2402 22 2 
31t 31t0" 1t. 31t0" 

+-cos----sm--. 
40 2 40 2 

(7.2.56a) 

(7.2.56b) 

(7.2.57) 

(7.2.58) 

Eliminating the resonant terms cos(1t0"/2) and sin(1t0"/2) in the right-hand side 
ofEq. (7.2.58), we find 

I 
c =-

2 I01t' 
31t I 

b =--->0. 
2 40 20 

(7.2.59) 

Substituting Eqs. (7.2.57) and (7.2.59) into Eq. (7.2.54) gives the periodic solution 
of the Wright equation 

1t0" &2 
X(t)=&cos-+..::-:-I:2cos1t0" + sin 1t 0" ]+0(&3) , 

2 10 

1t 31t 1 2 4 
b=-+(---)& +0(& ). 

2 40 20 

(7.2.60a) 

(7.2.60b) 

(7.2.60c) 

Taking b as the bifurcation parameter, we solve Eq. (7.2.54c) for 8 by ne­

glecting the higher order terms and then obtain 
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&~ ~ b-1£12 =2 lO(b-1£12) 
b2 31£-2 

&2 4(b-1£12)] . 
O"~t(1--)=t[l 

101£ 1£(31£-2) 

There follows 

x(t)~2 1 O(b-1£12) cosU 1£ 2(b-1£12) ]t} 
31£-2 2 31£-2 

4(b-1£12){2 {[ 4(b-1£12)]} . {[ + cos 1£ t +sm 1£ 
31£-2 31£-2 

4(b-1£12) ]t}. 
31£-2 

(7.2.61) 

(7.2.62) 

Theorem 7.2.2 indicates that the bifurcating periodic solution from the trivial 

solution is asymptotically stable. It is easy to see that this solution is the same as 
what we have had in Example 7.2.2 if the bifurcation parameter b-1£12 is substi­

tuted with a . 
Examples 7.2.2 and 7.2.3 demonstrate how to determine the bifurcating solu­

tion of a delay differential equation on the original state space by using two differ­

ent methods, while Example 7.1.2 deals with the bifurcating solution of the same 

equation on the center manifold. Among these methods, the perturbation method 
looks the simplest in solving the Wright equation. As well known, the perturbation 

method has a great number of varieties, say, the averaging method, the method of 
multiple scales, etc. They are also applicable to the delay differential equations. 
The next two sections will demonstrate the method of multiple scales through the 
examples of the Duffing oscillator with delayed feedback. 

7.3 Periodic Motions of a Duffing Oscillator with Delayed 
Feedback 

This section deals with the free vibration of a Duffing oscillator with delayed ve­

locity feedback. It begins with the analysis on the stability switches of equilib­

rium, and then presents how to determine the bifurcating periodic motions during 

the stability switches by using the Fredholm alternative and the method of multi­

ple scales, respectively. 

As discussed in Subsection 1.1.1, the re-scaled dynamic equation of the oscil­

lator reads 

x(t)+ 2c; x(t)+ x(t)+ fJX3 (t)=vx(t-r) , (7.3.1) 
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where the condition 2(; -v>O is assumed to hold such that the linearized system 

is asymptotically stable when the time delay 1: disappears. For simplicity, the 
study is confined to the case when p>O. 

7.3.1 Stability Switches of Equilibrium 

The system of concern has a unique equilibrium x=O since p > 0 . The perturbed 
motion A.x(t) near the equilibrium yields a linear delay differential equation 

ilX(t)+2(;At(t)+A.x(t)=vAt(t-1:) . 

The corresponding characteristic equation ofEq. (7.3.2) reads 

D(A.,1:)=A.2 +2(;,1.+ l_vk·JT =0. 

(7.3.2) 

(7.3.3) 

Obviously, ,1.=0 is not the root of Eq. (7.3.3). When Eq. (7.3.3) has any pure 

imaginary root A.=iw with w>O, it becomes 

D(iw,1:)=(I-w2 )+2i(;w-ivwe·iwT =0. 

There follow the corresponding real and imaginary parts 

{
Re[ D(iw,1:)]=(l-w2 )-vwsinw1:=O, 

Im[D(iw,1:)]=2(;w-vwcOSW1:=0. 

(7.3.4) 

(7.3.5) 

The second equation in Eq. (7.3.5) requires that 2(;/lvl~l. This, together with 
the assumption 2(; -v>O , gives v<-2(; <0. Hence, we have 

{ 

. l-w 2 w 2 -1 
smw1:=--=-,-,-' 

vw vw 
2(; 2(; 

COSW1:=-;-=-rvr' 

Eliminating the harmonic terms in Eq. (7.3.6) yields 

F(w)=(l-W 2 )2 +(2(;w)2 _(VW)2 =w4 + pw2 + 1=0, 

where p=4(;2 _v2 -2. Equation (7.3.7) has two positive roots 

(7.3.6) 

(7.3.7) 

(7.3.8) 

because p<O and p2 -4~0 . At these two roots, the following inequality holds 
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dFl = ±2WI2~pz-4>0 «0). 
dw ' 

w=ml,2 

(7.3.9) 

It is easy to see that wf > 1 and wi <1 . For each of these two roots, hence, Eq. 
(7.3.6) gives a series of critical time delays as following 

I 2s 
'I k =....:.....rarccos(--,, )+21at], 
'WI v 

k=0,1,2, ... (7.3.l0a) 

I 2s 
'2 k =~21t-arCcos(-,-, )+21at], 

, w2 v 
k=0,1,2, ... (7.3. lOb) 

As shown in Subsection 3.5.1, a pair of roots is crossing the imaginary axis from 

the left to the right when '='l,k , and from the right to the left when '='Z,k . 
More specifically, we look at a case study when S =0, v=-O.5. Now, Eq. 

(7.3.8) gives wI,z=(.Jl7±1)/4 and there follow the critical time delays from Eq. 
(7.3.10) 

4 1t 
'Ik = r;;:; (-+21at)= 1.226,6.132,11.04,15.94, .... 

, '\117+1 2 
(7.3.lIa) 

4 31t '2k = r;;:; (-+21at) = 6.035, 14.08,22.13,30.17, ... , 
, '\117-1 2 

(7.3. lIb) 

which can be ranked as 

(7.3.12) 

As analyzed in Subsection 3.5.1, this sequence of critical time delays indicates 
that the equilibrium x=O is asymptotically stable for 'E[O, '1,0) and 
,E(,z,o, '1,1), but unstable for ,E('I,O, 'z,o) and ,E('I,I, +00). As a result, the 
equilibrium undergoes three stability switches with an increase of time delay. 

At each critical time delay, Example 7.1.1 and Eq. (7.3.9) imply that a non­
degenerate Hopf bifurcation occurs when the time delay crosses the critical value. 

Given the system parameters, if there exist certain k and j such that 'I,k =, Z,j , 

then the system has two pairs of conjugate pure imaginary roots and undergoes the 

Hopf-Hopfbifurcation at such a critical time delay. This complicated phenomenon 

is out of the scope of this book. In the next two subsections, both methods of 
Fredholm alternative and multiple scales are respectively used to determine the 
periodic motions owing to the Hopfbifurcation. 
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7.3.2 Periodic Motion Determined by Method of Fredholm Alternative 

This subsection presents the computation procedure for the periodic solution, 
which arises from a Hopfbifurcation at the critical time delay To, ofEq. (7.3.1) in 
three steps by using the method of Fredholm alternative. 

(1) Computation of eigenvectors 

Let a=T-To denote the bifurcation parameter. By using the transformations 

Tt-H, X(Tt)~Zl(t), X(Tt)~Z2(t), we recast Eq. (7.3.1) as the following func­
tional differential equation 

(7.3.13) 

d; 
dO' OE[-l, 0), 

f(a,;)= [ ° 2 1 ];(0)+[0 0 ];(-1)+ 
-(To+a) -2(To+a) 0 v(To+a) 

(7.3.14) 

[-,u(To+~)2¢:(0)J. 0=0. 

The operators fu(al') ' fua(al') ' fuu(al-l') and fuuu(al·I-I·) are as following 

{~' BE[-l, 0), 

fu(alx)= [0 1] [0 0 ] (7.3.1 Sa) 
x(O)+ x(-l), 0=0, 

-(To+a)2 -2(To+a) ° v(To+a) 

{
O' OE[ -1, 0), 

fua(alx)= [0 0 ]X(O)+[O O]X(_I), 0=0, 
-2(To+a) -2( 0 v 

(7.3.1Sb) 

fuu (alxly)=O , (7.3.1Sc) 

(7.3.1Sd) 
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Moreover, the adjoint operator I: (01,) of lu(OI') reads 

{

- ~~, OE(O, 1], 

I: (alvr)= [0 1] [0 0] (7.3.16) 
vr(O) +vr(1) , 0=0. 

-(ro +a)2 -2S(ro +a) 0 v(ro +a) 

It is easy to compute the eigenvector (0(0) of the eigenvalue problem: 

lu (01(0 )=im(o . This relation implies that 

d(o . 
-=lm(o, OE[-l, 0), 
dO 

[ 0 2 1 ]( 0 (0)+[0 0]( 0 (-l)=im ( 0 (0) . 
-ro -2sro 0 vro 

Equation (7.3.17a) makes it possible to assume 

Substituting Eq. (7.3.17c) into Eq. (7.3.17b) yields B=im. 
The adjoint eigenvalue problem I: (Ol(~ )=im(~ gives 

d(~(0) =-imj"(O) 
dO 0,,0' 

OE(O, 1], 

Thus, (~ is in the form 

(7.3. 17a) 

(7.3.17b) 

(7.3.17c) 

(7.3.18a) 

(7.3.18b) 

(7.3.18c) 

with C=ir0
2 /m. It is possible to choose the constant D such that «(~, (0)=1 un­

der the following bilinear form 

(I{I, ;)=I{I(O);(O)+ fl{l(S+ 1)[0 0 ];(S)dS. 
1 0 vro 

(7.3.19) 

There follows 
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D 
i(To 2 +a/)+ivTo{02e-ia>· 

{O 
(7.3.20) 

With help of the constant D , it is easy to prove that (';, (0 )=0 . 

(2) Computation of the power series of the bifurcating solutions 

Now, the Fredholm alterative is used to determine the bifurcating periodic solution 

in a power series. For simplicity, a time transformation s=m(c)t is introduced 

such that the task becomes to seek a 21£ -periodic solution in terms of a properly 

selected small parameter O<c<<1 . This solution yields 

~( du 
(O c)-= !(a(c),u) , 

ds 
(7.3.2la) 

u(s,c)=u(s+21£,c) , u(s,O)=O, a(O)=O, m(O)={O. (7.3.2lb) 

Substituting the following candidate solution 

(7.3.22) 

into Eq. (7.3.13) and equating the same power of c, we have a set oflinear differ­
ential equations like Eq. (7.2.4) 

dUI 
(O-=!u (Olu l ) ; 

ds 
(7.3.23a) 

(7.3.23b) 
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dU2 dU1 
g2 (u 1 ,u2 )=-3m1-+3aJua (01u2 )-3m2-

ds ds 
+3az/ua(0Iul)+3aJuua(0Iullul)+3aI2Iuaa(0Iul) (7.3.23c) 

+3luu (0Iu1 Iu2)+ luuu (0Iu1 Iu ll u l)· 

Equation (7.3.23a) has a real solution 

[u1 (s)](B)=(o(B)e is +(0 (B)e-is • (7.3.24) 

Substituting it, together with luu(alxIY)=O, into Eq. (7.3.23b), we have 

gl (u1) = -2ml [i( ° (B)e iS -i( ° (B)e-is ] 

+ 2a1 [e is lua (01 ( ° )+e -is lua (01( ° )]. 

Using the condition ((;,(0)-1=((;,(0)=0 results in 

!X',gl(U1)]=_1 r2n (x",gl(u t ))ds= 2[-iml +a1A'(0)], 
2n Jo 

(7.3.25) 

(7.3.26) 

where x'=(o'e-is . The Fredholm alternative gives a 1 =0 and m1 =0, thus 

gl(U1)=0 holds. 
Now, Eq. (7.3.23b) degenerates to Eq. (7.3.23a) and there exists a (o(B) such 

that 

(7.3.27) 

According to Eq. (7.3.l5b), as well as a 1 =0 and m1 =0, we have 

(7.3.28) 

In order to evaluate the right-hand side of Eq. (7.3.28), we write U1 as 
U 1 =[ U1•1 U l2 ]T, where [u ll (s)]( B)=eiw/i+is +e-iw/i-is . Substituting this expression into 

Eq. (7.3.l5d) gives 

Thus, we have 

(7.3.29) 
B=O. 
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2 =-18,uZ'o D. 

Using the Fredholm alternative condition [X' ,g2 (u] ,u2)]=O, we have 

whereby we obtain 

_ 6,uQ)Z'~ [(Q)2 H~ + 2sQ) 2 Z'o )PR _Q)(Q)2 -Z'~ )PI] 
- P R [( Q)2 _Z'~)2 +Q)2 (4sZ'~ +4SQ) 2 Z' 0 +V2 Q)2 Z';)] , 

(7.3.30a) 

(7.3.30b) 

(7.3.31 ) 

(7.3.32a) 

(7.3.32b) 

where PR =Rd'(O) and PI =Im..t'(O). By using implicit differentiation or com­

puting «(;,fua(OI(o)) , we obtain 

(7.3.33) 

as well as 

(7.3.34) 
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Using the condition of marginal stability, it is easy to show that except for the 

factors PR and To, the denominators in Eqs. (7.3.32) and (7.3.34) are the same. 
Thus, we simplify Eq. (7.3.32) to 

(7.3.35) 

In summary, the bifurcating periodic solution reads 

£2 3 
a=-a2 +0(£ ), (7.3.36b) 

2 

m=lV+0(£3). (7.3.36c) 

In fact, Eq. (7.2.22) gives a=£2a2/2+0(£4) and m=lV+0(£4). As done in Sub­

section 7.2.1, it is also possible to substitute Eq. (7.3.35) into Eqs. (7.3.36b) and 
(7.3.36c) so that the periodic solution given by Eq. (7.3.36) is in term of the bifur­

cation parameter a . 

(3) Stability of the bifurcating solutions 

As stated in Theorem 7.2.2, the bifurcating periodic solutions are asymptotically 

stable when ,1=a2PR >0, or unstable when ,1<0. From Eq. (7.3.32a), we have 

(7.3.37) 

Note that the new time in Eq. (7.3.13) is the product of To and the original time, 

and that the vibrating frequency lV obtained here is the product of To and the vi­

brating frequency obtained in Subsection 7.3.1. Keeping these facts in mind, we 

see that sgn,1=-sgn,u<O at T=Tl,k and sgn,1=sgn,u>O at T=T2,k' That is, the 

periodic motions bifurcating at T=T',k are unstable, and those bifurcating at 

T=T2.k are asymptotically stable. 

Consider again the case when S =0, v=-0.5, ,u=0.1. Subsection 7.3.1 indicates 

that lV, =1.281 and lV2 =0.7808, together with the critical time delays T'.k and 

T 2,k' Simple computation gives 

(7.3.38a) 



www.manaraa.com

7.3 Periodic Motions ofa Duffing Oscillator with Delayed Feedback 243 

..1= 0.8705, (wITo,To)=(w2 ,T2,o)= (0.781,6.035), (7.3.38b) 

..1=-0.7345, (wITo,To)=(wpT1,1)= (1.281,6.132), (7.3.38c) 

..1=-0,8635, (wi To, To)=(W1' T1,2)= (1.281, 11.04), (7.3.38d) 

..1= 1.3470, (WIT0 ,To)=(W2 ,T2,1)= (0.781,14.08) . (7.3.38e) 

As a result, the periodic motions bifurcating at T=T1,k are unstable and those at 

T=T2,k are asymptotically stable, Noting the sign of a 2 , we know that the system 

undergoes the subcritical Hopfbifurcations at T=T2,o, T=T2,1 and so on, 

7.3.3 Periodic Motion Determined by Method of Multiple Scales 

(1) Approximate periodic solution 

To simplify the computation of the periodic motions ofEq. (7.3,1), the study in 

this subsection is confined to the case of small damping, weak nonlinearity and 

weak velocity feedback. That is, 

(; =&(;, V=&V, J.t=&J.t , (7.3.39) 

where 

0<&«1, t =0(1), v=O(l), )1=0(1) . (7.3.40) 

Because Eq, (7.3.1) is an autonomous system, the period w of a bifurcating mo­
tion is an unknown, and can be denoted by 

(7.3.41) 

where 0'=0(1) is the detuning frequency. Upon the this assumption, Eq. (7.3.1) 

can be written as a linear ordinary differential equation subject to a small pertur­

bation of both nonlinearity and delayed feedback 

(7.3.42) 

Now, we try to find the following expansion of two time scales for the solution 

ofEq. (7.3.42) 

(7.3.43) 

For this purpose, it is helpful to use the following differential operators defmed in 

(Nayfeh and Mook, 1979) 
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(7.3.44) 

Substituting Eqs. (7.3.43) and (7.3.44) into Eq. (7.3.42) and equating the same 

power of & , we obtain a set of linear partial differential equations 

Dg Xo (To,7; )+m 2 Xo (To,7; )=0, (7.3.45a) 

Dg Xl (To,7; )+m 2 Xl (To ,Tl )=-2DoDl Xo (To,7; )+oxo (To,7;)-px~ (To,7;) 
A (7.3.45b) 

-2( Doxo (To,7;)+vDoxo (To -T,7;). 

Solving Eq. (7.3.45a) for xo(To,7;), we have 

xo(To,7;)=A(Tl)ei(j}TO +cc, 

where cc denotes the conjugate term and 

A(7; )=!a(Tl )e iP(1j) • 

2 

Substituting Eq. (7.3.47) into Eq. (7.3.45b) yields 

Dg Xl (To,r; )+m2 Xl (To,7; )=-2imDI Aei(j}To +aAei(j}To 

_ p(A3e3i(j}To +3A 2 A ei(j}TO) 

- 2it mAei(j}To +ivme -i(j}< Aei(j}To +cc. 

To eliminate the secular term in the right-hand side ofEq. (7.3.48), let 

im(2Dl + 2t - ve -i(j}<)A -aA + 3 jJA 2 A =0 . 

(7.3.46) 

(7.3.47) 

(7.3.48) 

(7.3.49) 

Substituting Eqs. (7.3.47), (7.3.39) and (7.3.41) into Eq. (7.3.49) and separating 

the real part and the imaginary part, we have a set of autonomous differential 

equations that govern the amplitude a(Tl) and the phase {3(7;) 

{
2eDla=(-2( +vcosmT)a, 

2&maDl{3=-(m 2 -1 +vmsinmT)a+ 3: a 3. 

Thus, the ftrst order approximation of periodic motion is 

X(t) =a(&I)cos[mt+ {3(&I)]+o(&). 

(7.3.50) 

(7.3.51) 
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To determine the steady state motion, let D1a=0 and D1/3=0 in Eq. (7.3.50). 
For the equilibrium a=O, it is easy to see from the first equation in Eq. (7.3.50) 
that it is asymptotically stable if and only 

-2' +vcosmT<O. (7.3.52) 

This stability condition offers the same information as the critical condition 

(7.3.6). Because the behavior of equilibrium is clear, we pay attention to the case 

when a*"O hereafter. In this case, a yields 

{
-2' +vcosmT=O, 

(m 2 -l+vmsinmT)- 3: a 2 =0. 
(7.3.53) 

Eliminating the harmonic terms in Eq. (7.3.53) gives the amplitude-frequency 

equation 

Noting that Ivl~2' , we have two branches of solution 

4 2 - ~ 2 2 a = -em -l+m v -41' ). 
1,2 3p ':> 

From the second equation in Eq. (7.3.53) and Eq. (7.3.54), we have 

sinmr=_1_(m 2 _1_ 3pal~2 )=±-.l~v2 _4.;2 . 
vm 4 Ivl 

(7.3.54) 

(7.3.55) 

(7.3.56) 

Given a time delay r, solving the first equation in Eq. (7.3.53) for m under con­
dition (7.3.56) gives the frequency corresponding to each branch of solution 

{
.!..rarccos( 21'1 )+2k1t], a=al' 

1 I' T V 
m=-cos-I(~)= 

T v ~21t-arCCos( I~)+ 2krt], a=a2 . 

(7.3.57) 

Here k=0,1,2, ... imply an infinite number of frequencies and corresponding peri­

odic motions as well. However, the assumption in Eq. (7.3.41) may hold only 
when k=O. 

One may wonder the asymptotic stability of the periodic motion. Unfortunately, 

it is not possible to check the stability by linearizing Eq. (7.3.50) at the steady 



www.manaraa.com

246 7 Periodic Motions of Nonlinear Delay Systems 

state motion because the small perturbation Aa near the steady state motion 

yields 

2sDI Aa=0. (7.3.58) 

In fact, the stability of a bifurcating periodic motion has to be determined through 

the higher order approximation in Eq. (7.3.43). 

(2) A case study 

Now, we look at the case when ;=0, v=-0.5, ,u=0.1 again. Substituting these 

parameters into Eqs. (7.3.57) and (7.3.55) yields 

where .e(O, .1,0)=(0, 1.226) is for the unstable branch a l and .e(O, .2,0) 

=(0, 6.035) for the asymptotically stable branch a2 • Figure 7.3.1 gives the rela­

tion between a given time delay and the frequency of periodic motion. Figure 

7.3.2 shows the amplitude of periodic motion versus the time delay, together with 

the numerical results obtained by using the Runge-Kutta approach. 

As shown in Fig. 7.3.2, the system has an asymptotically stable equilibrium, an 

asymptotically stable periodic motion and an unstable periodic motion if 

.e(O, .1,0)' When .e(.I,o, .2,0) , the equilibrium becomes unstable and the un­
stable periodic motion disappears, only the stable periodic motion remains. When 

.>.2,0 =6.035, the equilibrium becomes asymptotically stable again, but loses 

stability soon when .>.1,1 =6.132 . Hence, the equilibrium undergoes the Hopf bi­

furcations at .1,0=1.266 and .2,0=6.035, respectively. 

2.0 

1.5 1---+------.. 

Fig. 7.3.1. Delay-frequency relation of periodic motions 
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Fig. 7.3.2. Delay-amplitude relation of periodic motions 

Figure 7.3.3 presents two trajectories of the system with time delay 1"=1. The 

phase trajectory initiating from x(t)=1+t+2.5t2 , tE[-1, 0] approaches the as­

ymptotically stable equilibrium, while the phase trajectory initiating from 

x(t)=10+1Ot+25t2 , tE[-1, 0] approaches an asymptotically stable periodic mo­

tion of fundamental frequency m=4.713 rapidly. This numerical result coincides 

very well with the approximate solution given by Eqs. (7.3.55) and (7.3.57), where 

a~17.73 and m~31t12~4.713 with an increase of time. 

2 80 a. 

40 
i 0 

x 0 

-2 t<O 
-40 

-4 -80 
-2 -1 0 -20 -10 0 10 20 

x x 

Fig. 7.3.3. Two trajectories of system when T=l; a. a trajectory approaching equilibrium, 
b. a trajectory approaching limit circle 

It should be emphasized that the Duffing oscillator with strong negative feed­

back of delayed velocity always exhibits a periodic motion for appropriate initial 

condition even if the time delay is very short. However, the approximate system 

on the basis of Taylor expansion in Section 5.3 does not keep this property. 

One may wonder how the system behaves when 1">1"\,\ =6.132 since the system 

equilibrium in this case is unstable. As discussed in Subsection 7.3.2, the unstable 
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equilibrium may still bifurcate an asymptotically stable periodic motion. However, 

the basin of attraction of the bifurcating periodic motion may be very small, and 

falls into a "narrow" subspace of the Banach space C[-r, 0] . The numerical inte­

gration from a great number of initial conditions often fails to capture the periodic 

motion. For instance, Fig. 7.3.4 gives the time history and Fourier spectrum of a 

motion when r=6.2. They look quite chaotic. To confirm the chaotic feature be­

hind the motion, a Poincare section was introduced in the case study as following 

.E={(x,x)1 x is local maximum}, (7.3.59) 

and the steady state motion was recorded on the Poincare section in Fig. 7.3.5. 

Undoubtedly, this is a typical Poincare section of strange attractor. 

[ .... 
Cl 0 500 1000 1500 2000 2500 

Time(s) ., 3 '0 

.g 2 
p., 

E I 

'" I- 0 
t... 

0.0 0 .1 0 .2 0.3 0.4 0.5 t... 
Frequency (Hz) 

Fig. 7.3.4. Time history and FFT spectrum 
of a chaotic motion when 1'=6.2 

1500 

1000 

x 500 

0 

-500 
-20 -10 0 10 20 

X 

Fig. 7.3.5. Chaotic attractor on the Poincare 
section when 1'=6.2 

7.4 Periodic Motions of a Forced Duffing Oscillator with 
Delayed Feedback 

The objective of this section is to show how to analyze the periodic motions of 

non-autonomous nonlinear systems with a time delay through an illustrative ex­

ample, a harmonically forced Duffing oscillator with linear delayed state feed­

back. As discussed in Subsection 1.1 .1, the delay differential equation of concern, 

after re-scaled, can be written as 

x(t)+2( x(t)+x(t)+.ux 3 (t)=ux(t-r)+vx(t-r)+ fcosAt , (7.4.1) 

For simplicity, the study is confined to the case of small damping, weak cubic 

nonlinearity and weak state feedback. That is, 
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r; =0(&), p=O(&), u=O(&), v=O(&), (7.4.2) 

where 0<&«1. In what follows, the primary resonance and 113 subharmonic 
resonance ofEq. (7.4.1) will be studied respectively by using the method of multi­

pIe scales. 

7.4.1 Primary Resonance 

The primary resonance of Eq. (7.4.1) always occurs when A.~l even though the 

amplitude of excitation may be very small. That is, 

f =0(&), A.=l +80" , (7.4.3) 

where 0"=0(1) is the detuning frequency. In this case, Eq. (7.4.1) becomes 

x(t)+x(t)=-2sx(t)- J.1X3 (t)+UX(t-1')+VX(t-1')+ fcos(l +&O")t . (7.4.4) 

Now, we look for an expansion of two scales for the solution ofEq. (7.4.4) 

(7.4.5) 

Substituting Eq. (7.4.5) into Eq. (7.4.4) and equating the same power of &, and 

the same order quantities as well, we obtain a set of linear partial differential 

equations 

8[D~ XI (To,7; )+XI (To,7; )]=-2BDoDl xo (To,7; )-29Joxo (To,7;) 

- J.1X~ (To,TI)+uxo(To -1',7; )+vDoxo(To -1',7;)+ fcos(To +O"TI), 

where the differential operators Do and DI are defined in Eq. (7.3.44). 

Solving Eq. (7.4.6a) for xo(To,1-;), we have 

xo(To,7;)=A(7;)eiTO +cc, 

where cc denotes the conjugate term and 

A(~)=.!..a(~)eiP(1i) . 
2 

Substituting Eq. (7.4.7) into Eq. (7.4.6b) yields 

(7.4.6a) 

(7.4.6b) 

(7.4.7) 

(7.4.8) 
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e[Dgx, (To,1~)+x, (To,~)]=-2i&D,AeiTo _2i~eiTo 

_,u(A3e3iTo +3A2AeiTo )+ue-ir AeiTo +ive-ir AeiTo 

+l...eiaTj eiTo +cc. 
2 

To eliminate the secular term in Eq. (7.4.9), let 

-i(2&D, +2t; _ve-ir)A+uAe-ir -3,uA2A+l...e iaTl =0. 
2 

(7.4.9) 

(7.4.10) 

By substituting Eq. (7.4.11) into Eq. (7.4.10) and separating the real part and the 

imaginary part, we obtain a set of autonomous differential equations that govern 

the amplitude a(~) and the phase tp(~) 

where 

{
2&D,a=-(2t; +usinr-vcosr)a+ jsintp, 

2&aD,tp=(2&0"+ucosr+vsinr)a-3: a 3 + jcostp, 

tp(~ )=O"~ - P(~) . 

(1) Steady state primary resonance 

(7.4.11) 

(7.4.12) 

From Eq. (7.4.11), we have a set of algebraic equations for the amplitude a and 

the phase (jJ of the steady-state primary resonance by setting D,a=O and D,tp=O 

{
-(2t; +usinr-vcosr)a+ jsin(jJ=O, 

(2A.-2+ucosHvSinr)a-¥a3 + jcos(jJ=O, 
(7.4.13) 

whereby we derive the frequency response relation between a and A., and that 

between (jJ and A. 

[(2t; +usinr-vcosr)2 +(2A.-2+ucosHvsinr- 3,u a 2)2 ]a2 - j2 =0, 
4 

A 2t; +usinr-vcosr (7.4.14) 
tantp+ 3 O. 

2A.-2+ucosr+vsinr-....!:!...a2 
4 

Given a specific value of a, it is easy to solve the first equation in Eq. (7.4.14) for 

A. , and then obtain (jJ from the second equation. Hence, we have the first order 

approximation of the steady-state primary resonance 
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x(t)=&cos(At-q,)+O(&) . (7.4.15) 

Figure 7.4.1 shows the frequency-amplitude relations of the primary resonance for 

the uncontrolled system, the controlled system without time delay, and the con­

trolled system with different time delays, respectively. 

a 

6 __ uv~o 

--T~O 

1.0 

Unstable 

Stable 

1.5 2.0 

Fig. 7.4.1. Amplitude of frequency response of the primary resonance at different time de­
lays when, =O.OS, ,lI=O.OS,f =O.S, u=O and v=O (or u=O.1 and v=-O.I ) 

(2) Stability analysis 

To analyze the stability of the steady-state primary resonance, we linearize Eq. 

(7.4.11) at (lX, q,) with respect to a and cp 

{
2&lJ/ .... a=-(2S +usinr-vcosT)~a+ fcosq,~cp, 
2&D1 fl..cp=_(32J.1 &2 + ~ cosq,)fl..a- ~ sinq,fl..cp. 

a a 

The characteristic equation ofEq. (7.4.16), thus, reads 

[
-(2S +usinr-vcosT)-2ts fcosq, ]_ 

det (3J.1 '2 f ') f., 2 -0 . - -2 a +~coscp --;-SlllCP- ts 
a a 

According to Eq. (7.4.13), we simplify Eq. (7.4.17) to 

(ts)2 +2a(ts)+b=0, 

where 

(7.4.16) 

(7.4.17) 

(7.4.18) 

{ 
;- u. v 

a=':J +-SlllT--COST, 
2 2 (7.4.19) 

b=(~)2+(A-l?cosT~sinT 3J.1 &2)(A-l+!!..cosT~sinT_9J.1 &2). 
2 228 228 
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The Routh-Hurwitz criterion indicates that the steady-state vibration is asymptoti­

cally stable if and only if the following two inequalities hold simultaneously 

{ 
;- u. v 

a=." +-smr--cosr>O, 
2 2 (7.4.20) 

a2 u V.3f.1'2 U V.9f.1'2 b=(-) +(A-l+-cosr+-smr--a ) (A-l+-cosr+-smr--a »0. 
2 228 228 

The first condition in Eq. (7.4.20) is independent of the nonlinearity, the resonance 

amplitude and the excitation. As a matter of fact, it serves as the stability condition 

for the free vibration of the linear system with delayed state feedback. Letting 

da u v . 
-=-cosr+-smr=O 
dr 2 2 ' 

(7.4.21 ) 

we obtain an infinite number of time delays 

-I U rr=tan (--)+rrr, r=0,1,2 ... (7.4.22) 
v 

at which a arrives at the extreme values 

(7.4.23) 

This implies that if the feedback gains are so small that .Ju2 +V2 <2( , the stability 

of the free vibration of the linear system is independent of the time delay in the 

state feedback. This condition carries the same information as Eq. (3.1.33) if the 

higher order terms such as v4 , (4 and V 2(2 are neglected there. 

By calculating the condition dA/da=O, we can readily find that the critical ca­

se of b=O corresponds to the turning points in Fig. 7.4.1. Thus, the stability of the 

primary resonance of the Duffing oscillator with delayed state feedback is qualita­

tively the same as that of the Duffing oscillator free of time delay. When the time 

delay yields Eq. (7.4.21), the second condition in Eq. (7.4.20) becomes 

b=(( + ~)2 +(A-1 3f.1 a 2 )(A-1 9 f.1 a 2 »0. 
2 8 8 

(7.4.24) 

(3) Amplitude peak and equivalent damping 

Substituting Eq. (7.4.23) into the first equation in Eq. (7.4.14) yields 

[(2( ±~U2 +V2 )2 +(2A-2- 3f.1 a2)2 ]a 2 - j2 =0. 
4 

(7.4.25) 
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Hence, the amplitude peak of the primary resonance reads 

(7.4.26) 

This implies that if the time delay is appropriately chosen so that 

a=amax =t; +.Ju2+v212, the amplitude peak can be reduced to a minimum by the 

state feedback. On the other hand, the state feedback will greatly increase the am­

plitude peak if the time delay makes a=amin =t; -.Ju2 +V2 12. This property en­

ables one to design an appropriate time delay in the state feedback in order to en­

hance the control performance. 

It is interesting that the quantity a defined in Eq. (7.4.l9) plays a role of the 

damping ratio in the harmonically forced Duffmg oscillator. That is, it governs not 

only the stability of the resonance, but also the amplitude peak of the primary 

resonance. For simplicity, we refer to a as the equivalent damping ratio of the 

system with delayed state feedback. For the case shown in Fig. 7.4.l, the equiva­

lent damping ratios at the time delay r=1[/4",,0.786 and r=1[",,3.l42 are 

a=amax ",,0.1207 and a=amin ",,0, respectively. The corresponding peaks of the 

displacement amplitude reach the minimum and the positive infinity, respectively. 

Furthermore, when a happens to vanish, the system response will include the free 

vibration that does not decay. This may result in a quasi-periodic motion if the 

frequency ratio of the free vibration and the forced vibration is not a rational num­

ber. Anyhow, this case should be avoided from the viewpoint of vibration control, 

for the critically stable response is very dangerous. 
Now we consider the case of negative velocity feedback, i.e., v<O, which is 

widely used to reduce the steady-state vibration in engineering. In this case, Eq. 

(7.4.22) gives rr=rrc since u=o. The optimal control performance, hence, can be 
realized only when there is no time delay or there is a long time delay, say, r=21[ 
in the velocity feedback. If displacement feedback is introduced, we have the fol­

lowing linear approximation ofEq. (7.4.19) for a short time delay 

Ivl+ur 
a""t; I +o(r) . 

2 
(7.4.27) 

This implies that the control performance can be better than the optimal one of the 

velocity feedback only, if the displacement feedback gain u is positive. 



www.manaraa.com

254 7 Periodic Motions of Nonlinear Delay Systems 

4 4 

I u<O, v>O I --- I u>O, v>O I ' , , , , , 
2 2 

a/I; 0 a/I; 0 

-2 -2 
0 2 4 6 0 2 4 6 

r r 
4 4 

, I u<O, v<O I I u>O, v<O I " , 
2 2 

, 

a/I; 0 

-2 -2 
0 2 4 6 0 2 4 6 

r r 

Fig. 7.4.2. Relations between ratio a/I; and delay r at various feedback gains u and v; 
Key: thick solid: lul=lvl=21; , thin solid: lui =41;, Ivl=l;, dashed: lul=l;, Ivl=41; 

Figure 7.4.2 shows the variation of ratio a/ r:; with an increase in time delay r 
under different combinations of the feedback gains. It is easy to see from Fig. 
7.4.2 that the equivalent damping ratio is optimal when the feedback gains satisfy 
u>O and v<O, because it is the largest when the time delay is short, and de­
creases to zero at a relatively long time delay. This shows again that the positive 
displacement feedback will improve the vibration control performance of the 

negative velocity feedback. 

7.4.21/3 Subharmonic Resonance 

As well known, a harmonically forced Duffing oscillator may undergo a 1/3 sub­

harmonic resonance when the excitation frequency is near the tripled fundamental 
natural frequency of linearized oscillator and the excitation amplitude is large 

enough. This subsection will show that a harmonically forced Duffing oscillator 

under linear state feedback with time delay may also have a 1/3 sub harmonic 
resonance if some conditions hold. 
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To study the 113 subharmonic resonance of the controlled system, we confine 

ourselves to the case when 

A,-3=&0", 0"=0(1), (7.4.28) 

but release the excitation from the small magnitude. Rewrite Eq. (7.4.1) as 

x(t)+x(t)=-2( X(t)_J1X3 (t)+ux(t-.)+vx(t-.)+ jcos(3+&0")t . (7.4.29) 

Substituting Eq. (7.4.5) into Eq. (7.4.29) and equating the same power of & , as 

well as the same order quantities, we obtain 

Dg Xo (To,7;)+ Xo (To,7;)= j cos(3To +0"7;) 

&[Dg XI (To,7; )+XI (To,7; )]=-2&DoD l xo (To,7; )-2t;Doxo (To,7;) 

- J1X~ (To,7; )+uxo (To -.,7; )+vDoxo (To -.,7;). 

By solving Eq. (7.4.30a) for xo(To,TI)' we have 

x (T T )=A(T )e iTO +Ge i(3To+aT1) +cc o 0' I I , 

Substituting Eq. (7.4.31) into Eq. (7.4.30b) yields 

&[Dg XI (To,7;)+ XI (To,7;)] 

=( -2i&DIA-2i~-6,uAG2 -3,uA2A +ue-iT A+ive-iT A)e iTO 

_3;lA2Gei(To+crTil + ... 

The secular term ofEq. (7.4.32) vanishes if and only if 

(7.4.30a) 

(7.4.30b) 

(7.4.31) 

(7.4.32) 

i(2&DIA+2~-ve-iT A)-ue-iT A+6,uAG2 +3,uA2A +3;lA2Gei(jTl =0. (7.4.33) 

Substituting Eq. (7.4.8) into Eq. (7.4.33) and separating the real part and the 

imaginary part, we obtain a set of autonomous differential equations governing the 

amplitude and phase of the 113 subharmonic resonance 

{
2&Dl a=-(2( +usin.-vcos.)a 3JlGa 2 sin¢, 

2 9 9 G (7.4.34) 
2&DI¢=(2&0"+3ucos.+3vsin .-18JlG2 )_.....!!:...a 2 -~cos¢, 

4 2 

where 

¢(7; )=0"7; -3fJ(7;)· (7.4.35) 



www.manaraa.com

256 7 Periodic Motions of Nonlinear Delay Systems 

(1) Steady state subharmonic resonance 

From Eq. (7.4.34), we get a set of algebraic equations that governs the amplitude 

a and the phase ¢ of the steady-state 1/3 subharmonic resonance 

{ 

. ,3JlGa2 • J. 
(2( +USlllT-vcosT)a= Slll,/" 

2 
. 2 9 '2 9 Ga ' (2A-6+3uCOST+3VSlllT-18JlG )--.!:!:...a =_Jl_-cosr/J, 

4 2 

(7.4.36) 

whereby we have the frequency response relation between a and A, and that 

between ¢ and A 

9(2( +usinT-vcosT) 2 +(2A-6+3ucosT+3vsinr-18JlG2 _ 9Jl a 2 )2 
4 

_(9Jl~a )2=0, 

3(2( +usinr-vcosT) 
tanr/J+ 9 

2A-6+3ucosT+3vsinT-18JlG 2 --.!:!:...a 2 

4 

o. 
(7.4.37) 

The first order approximation for the steady-state 1/3 subharmonic resonance 

reads 

x(t)=acos(At-r/J)+-4cosAt. 
3 I-A 

We can expand the first equation in Eq. (7.4.37) as 

a 4 -2Pa 2 +Q=O, 

and solve it for a 

where 

P=~(lA-6+3ucosT+3vsinT)-6G2 , 
9Jl 

Q=~[9(2( +usinT-vcosT)2 
81Jl 

+(lA-6+3ucosT+3vsinr-18JlG2)2 ]. 

(7.4.38) 

(7.4.39) 

(7.4.40) 

(7.4.41) 
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Equation (7.4.40) requires P>O and p2>Q since Q>O. Substituting Eq. (7.4.41) 
into these inequalities gives 

27 J.I 2 3u 3v . --G «A-3+-cosr+-smr), 
4 2 2 

--G -(A-3+-cosr+-smr) 1
63J.1 2 3u 3v. I 

4 2 2 (7.4.42) 

It is easy to prove that the second inequality covers the first, and hence gives the 

existence condition of the 113 subharmonic resonance. We can readily convert this 

condition into the form with respect to the dimensionless excitation amplitude f 
and excitation frequency A . 

Figure 7.4.3 shows the existence regions of the 113 subharmonic resonance on 
the plane of (A, f) for the uncontrolled system, the controlled system without 

time delay, and those with time delays corresponding to a~amax and a~O, re­

spectively. Figure 7.4.4 gives the frequency-amplitude relations of the 113 sub­
harmonic resonance for these systems subject to the same level of excitation. Ob­

viously, the equivalent damping ratio governs the threshold of the excitation 

amplitude and frequency for the occurrence of the 113 subharmonic resonance, so 

does the time delay. However, it is not so effective to reduce the amplitude of the 
113 subharmonic resonance as in the control of primary resonance by choosing a 
proper time delay. 

f 

100 
--uv~O 

80 --<~O 

---<~1t/4 

60 ...... r=1[ 1/3 subharmonic 
resonance region 

40 

20 -- - - - - - - - - -- ----

o 
~3-~-~4-~-~5-~-~6 

A 

Fig. 7.4.3. Amplitude and frequency of threshold excitation at different time delays when 
(=0.05, ,u=0.05, u=O and v=O or (u=O.l and v=-O.l ) 
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a 

8 

6 

2 

o~~~~~~~~~~ 
3.0 3.5 4.0 4.5 5.0 5.5 6.0 

A 

Fig. 7.4.4. Amplitude of frequency response of 113 subharmonic resonance at different time 
delays when (=0.05, ,u=0.05, f =30, u=O and v=O (or u=O.1 and v=-O.l ) 

(2) Stability analysis 

To analyze the stability of the steady-state subharmonic resonance, we linearize 

Eq. (7.4.34) at (a,¢) with respect to a and rjJ 

{
2liD/),.a=-(2S +usinr-vcosH 3,uGasinJ)L1a 

9,u ,9,uGa' 
2dJ] L1rjJ=-(a+ GcosrjJ)L1a+--sinrjJL1rjJ. 

2 2 

The corresponding characteristic equation in liS reads 

[
-(2S +usinr-vcosH3,uGasinJ)-2lis 3,u~a2 cosJ 1-

det 9 9 G' -0. (7.4.44) 
,u' ,u a ' --(a+GcosrjJ) ---sinrjJ-2lis 
2 2 

Applying Eq. (7.4.36) and the fIrst equation in Eq. (7.4.41) to Eq. (7.4.44) gives 

(liS)2 +2a(lis)+d=0, (7.4.45) 

where 

S u. v d a= +-SlllT--COST 
2 2 ' 

(7.4.46) 

Hence, the 1/3 subharmonic resonance is asymptotically stable if and only if 

(7.4.47) 

The fIrst inequality here shows that the equivalent damping ratio takes an impor­

tant role again in the stability of the subharmonic resonance. The second inequal-
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ity implies that the upper branch solution in Eq. (7.4.40) is asymptotically stable, 

while the lower branch solution shown as the dashed curve in Fig. 7.4.4 is unsta­
ble. 

In summary, the method of multiple scales proves to be a powerful tool to gain 
an insight into the primary resonance and subharmonic resonance of the harmoni­

cally forced Duffmg oscillator when the nonlinearity and gains of delayed feed­

back are weak. The method is also applicable to the super-harmonic resonance and 

combined resonance of this type of oscillators, and even the harmonically forced 

oscillators with two feedback time delays. Furthermore, the method of multiple 
scales here can be replaced by other techniques for weakly nonlinear differential 

equations, see, for example, the average method used in (Nguyen 1999). The pri­

mary resonance and the 113 subharmonic resonance of the harmonically forced 
Duffmg oscillator with delay state feedback are qualitatively the same as those of 

the uncontrolled Duffing oscillator subject to harmonic excitation when the di­

mensionless feedback gains are the same order as the small linear damping ratio. 

From the viewpoint of vibration control, however, the time delay plays an impor­

tant role in providing active damping, which governs the resonance stability and 

the amplitude peak. The combination of positive displacement feedback and 
negative velocity feedback is the most advantageous one for attenuating those 

resonances. Furthermore, a proper choice of time delay can enhance the control 

performance. 

7.5 Shooting Scheme for Locating Periodic Motions 

This section presents how to compute the periodic solutions of a nonlinear delayed 
dynamic numerically in order to verify the approximate results in Section 7.4. As 

shown in Section 7.4, more than one periodic motion may co-exist at certain range 
of excitation frequency if the primary resonance or 113 subharmonic resonance 

occurs. If this is the case, one of the periodic motions is unstable. Thus, the 

shooting technique, rather than the direct numerical integration, such as the 

Runge-Kutta approach, will be discussed in order to determine the co-existing 

periodic motions, including the unstable ones. 

7.5.1 Basic Concepts and Computation Scheme 

We fIrst consider the initial value problem of a 2-dimensional non-autonomous 

delay differential equation as following 
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{
y(t)= f(y(t),y(t-1'),t), 

y(t)=yo(t), 

t>to ER, YER 2, 

tE[to -1', to]' 
(7.5.l) 

As discussed in Section 2.l, the initial condition now must be a given function 

vector yo(t) on the time interval [to-1', to], rather than a single initial state 

yo(to) at the moment of t=to' For the harmonically forced Duffing oscillator 

with delayed state feedback in Section 7.4, let 

(7.5.2) 

f(y(t),y(t-1'),t)=.[ 3 x(t) ]. (7.5.3) 
-x(t)-JIX (t)-2Si(t)+ux(t-1')+v(t-1')+ fcos2t 

In what follows, we study how to locate the solution ofEq. (7.5.1) with the period 

T=.21nI2, where I is a positive integer. For simplicity, we assume that the time 

delay yields O~1'<T. 

Now, we recall the Poincare section and the Poincare mapping, which concep­

tually simplifY the task of finding a periodic solution r of the ordinary differenti­

al equation to locating the corresponding fixed point YF' In the case of non­

autonomous ordinary differential equations, especially those with harmonic inho­

mogeneous terms, the Poincare section Io is often defmed as a fixed excitation 
phase If/o in the 3-dimensional expanded stated space (x,x,If/) , where 

If/=mod(2t,2n), and the corresponding Poincare mapping Po:Io-tIo establish­
es a unique correspondence between the periodic orbit r and the fixed point 

YF EIo . For the delay differential equations, however, it may be impossible to 

determine the unique periodic solution r of Eq. (7.5.l) from the fixed point 

YF EIo of the Poincare mapping Po . This is because there exist an infinite num­

ber of trajectories that start from YF EIo , whereas the periodic orbit r should be 

the one that coincides with the piece of itself on the previous phase interval 

[If/o -21', If/o] , not only atthe fix point YF EIo . 

To establish a one-to-one correspondence between the fixed point YF of Poin­

care mapping and the periodic solution r ofEq. (7.5.l), we intuitively generalize 

the Poincare section to the "Poincare Plate" IT with the thickness of 1', as 

shown in Fig. 7.5.1. The corresponding Poincare mapping PT : Ir-tIr is an in­

finite dimensional mapping, which maps a function y(t)EC=.C([to -1', to], R2) to 

the function Pr(y(t))EC, where to='lf/oI2. The original fixed point YFEIo under 

the Poincare mapping Po should be generalized to a "Fixed Are" YF(t)EIT under 

the infinite dimensional Poincare mapping Pr • Here, YF(t)EIr represents the 
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segment of the periodic orbit r intersecting with the Poincare plate, namely, 

YF(t)=rnI , . 

Periodic Orhit-2 

Poincare PlateL: T 

Fig. 7.5.1. Generalization of the Poincare section and the fixed point for locating the peri­
odic orbit of a delayed nonlinear system 

The task of shooting a periodic orbit ofEq. (7.5.1) now is to locate the fixed arc 

YF(t)EL',. A straightforward extension of the current shooting scheme is to ap­

proximate the candidate arc y(t), tE[ta -r, ta] in shooting by using N line seg­

ments and to shoot the N + I nodes of these segments. No doubt that the longer the 

time delay r , the more line segments must be used in the shooting procedure. 

Specifically, let z=[y;r yi .. , Y~+l]T denote the vector of node coordinates on 

the candidate arc y(t), tE[ta-r, ta]. Here, 

(i-l)r 
t.=t ---

I a N-I' 
i=I,2, ... ,N. 

The shooting procedure based on the Newton-Raphson iteration is as below 

(7.5.4) 

(7.5.5) 

where P: z-+z is the N-dimensional approximate mapping for P, and DP is its 

Jacobian. In the following, we present how to compute P(Zk) and DP(Zk) in Eq. 

(7.5.5). For the sake of simplicity, let the subscript of Zk be omitted. 

The computation of mapping P(z) is actually the numerical integration for the 

following differential equations through the successive use of available codes such 

as the Runge-Kutta scheme until t2.ta + T 

Yj+l(t)=!(Yj+l(t),yj(t-r),t), tE[ta+(j-l)r, ta+jr], j=O,I,2 .... (7.5.6) 

If the ratio TIT is an integer, we happen to obtain 
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(7.5.7) 

Otherwise, it is necessary to interpolate every y(ti + T), i=O,l, .. . ,N in Eq. (7.5.7) 
from its two neighbors. 

The Jacobian DP is the solution matrix Z(T) of the initial value problem of 

the following set of linear delay differential equations 

{i(t):~j f(z(t),z(t-r ),t)Z(t)+ D2 f( z(t),z(t -r ),t)Z(t - r), 

Z(t)-dmg[J(t-t i »), tE[to -r, to)' 
O~i~N 

where 

z(t)=[x(to +t) x(t j +t) ... x(t N +t)f , 

{
1' t=O, 

J(t)= 
0, t;tO, 

(7.5.8) 

(7.5.9) 

(7.5.10) 

D j and D2 are the derivative operators with respect to z(t) and z(t-r) , respec­
tively. To obtain the Jacobian DP, Eq. (7.5.8) should be simultaneously integrat­

ed with Eq. (7.5.1) by using the codes for computing P(z). 

The shooting procedure can be incorporated with the parametric continuation 
technique to determine the unknown periodic orbits of the nonlinear delay system 
from a known periodic orbit of the simplified systems. For instance, it is possible 
to start from the periodic orbit of the delay-free system, and to take the time delay 
r as the continuation parameter. 

7.5.2 Case Studies 

(1) Primary resonance 

Figure 7.5.2 shows the amplitudes of primary resonance versus the excitation fre­

quency obtained by the method of multiple scales in Subsection 7.5.1 and the 

shooting scheme for four typical parametric combinations as shown in Fig. 7.4.1. 

Here, the results of the shooting scheme can be considered as the exact resonance 

amplitudes including the higher order terms of 0(&) neglected in Subsection 

7.4.1. It is obvious that the approximate analytical results coincide with the exact 

results very well, except in the lower frequency range when the equivalent 

damping ratio is large. The comparison supports the assertion that the properly 
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selected time delay increases the equivalent damping ratio so that the primary 
resonance can be attenuated effectively. 

68 a. 6 8 b. 
--MS 

---<>- Shooting ---<>- Shooting 

4 4 

a a 

2 

2.0 2.0 

6B -MS 

---<>- Shooting 

4 

c. d. 

a a 

2.0 2.0 

Fig. 7.5.2. Amplitudes of primary resonance computed by the method of multiple scales 
(MS) and shooting method when S =O.OS, ,u=O.OS and f =O.S ; a. u = 0.0 and v = 0, b. 
u=O.I, v=-O.l and T=O, c. u=O.l, v=-O.1 and T=n/4, d. u=O.l, v=-O.l and 
T=n 

(2) 1/3 subharmonic resonance 

In Fig. 7.5.3 are shown the vibration amplitudes of the 113 subharmonic resonance 

versus the excitation frequency obtained by the two methods for four typical 

parametric combinations. It should be noted that the amplitude here is the maxi­

mal value of the displacement, instead of the amplitude of 1/3 harmonic compo­

nent only. Of course, the self-intersections of the amplitude curves only mean the 

amplitudes of the asymptotically stable motion and the unstable motion are the 

same at a specific excitation frequency, rather than any bifurcation, because the 

phases of these two motions are totally different. 
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Fig. 7.5.3. Amplitudes of 1/3 subharmonic resonance computed by the method of multiple 
scales (MS) and the shooting method when t; =0.05, 1'=0.05 and f =30; a. 
u=O.O and v=O, b. u=O.I, v=-O.1 and r=O, c. u=O.I, v=-O.1 and r=nI4, d. 
u=O.I, v=-O.1 and r=n 

15 c------r======;:] 
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10 --<>- Shooting 
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Fig. 7.5.4. 1/3 subharmonic resonance computed by the method of multiple scales (MS) 
and the shooting method when t; =0.05, 1'=0.05, f =30, ,1,=4.5, u=O.I, v=-O.1 and 
r=nI4; a. time history, b. amplitude of the Fourier spectrum 
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Compared with the primary resonance, the subharmonic resonance given by the 

method of multiple scales substantially deviates from the exact result, but is still 

acceptable for most engineering applications. As shown in Fig. 7.5.4, the subhar­

monic and harmonic amplitudes obtained by the two methods are almost the same, 

while the phase difference between the results causes the above mentioned devia­

tion. The numerical result in the case of T=7t/4",O.786 supports again the impor­

tant role that the proper time delay plays in removing the occurrence of the 113 

subharmonic resonance. 
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8 Delayed Control of Dynamic Systems 

In previous chapters, attention is mainly paid to the effect of unavoidable feedback 

time delays on the dynamics of systems. As mentioned time to time, the time de­

lays can be utilized to improve the control performance of dynamic systems. In 

this case, the time delay plays a favorable and important role in control. This 

chapter will present a number of control strategies of delayed feedback from the 

viewpoints of both vibration reduction and system stabilization. 

8.1 Delayed Linear Feedback for Linear Systems 

8.1.1 Delayed Linear Feedback and Artificial Damping 

Consider a linear, harmonically forced, single-degree-of-freedom system with de­

layed state feedback as following 

mi(t)+CX(t)+kx(t)=UX(t-TJ )+VX(t-T2)+ /osinmt , (8.1.1) 

where m>O, c;::>:O, k;::>:O, 10;::>:0, m;::>:O, TJ;::>:O and T2 ;::>:0 are constant parameters. 

We choose the feedback gains u and v such that the steady state motion of sys­

tem is asymptotically stable. In this case, the transient motion of system is damped 

out and the forced vibration becomes a steady state motion as follows 

x(t)=asin(mt+qJ) , (8.1.2) 

where a and qJ are constants. Substituting Eq. (8.1.2) into Eq. (8.1.1) yields 

(k-mm2 )asin( mt+qJ )+cliXlcos(mt+qJ) 

=uasin[ m(t-TJ )+qJ )]+VliXlcos[m(t-T2 )+qJ )]+ /osinmt. 
(8.1.3) 

We can recast Equation (8.1.3) as the following harmonic balancing equation cor­

responding to an uncontrolled system 

(8.1.4) 

where 
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{
ke(OJ)=k-ucosOJr1-vOJsinOJr2 , 

ce(OJ )=c+usinOJr1 / OJ-vcosOJr2 • 
(8.1.5) 

We refer to these two parameters as the equivalent stiffness and the equivalent 
damping of system (8.1.1), respectively. 

Now, four control parameters u, v, r l and r2 are available to adjust the dy­

namic performance of system through the equivalent stiffuess and damping. To 

see the fact more explicitly, recast Eq. (8.1.5) as 

(8.1.6) 

Given a pair of Ce (OJ) and ke (OJ) , it is possible to solve Eq. (8.1.6) for u and v 

provided that 

[ 
cosOJrl 

det 
-sinOJr1 / OJ 

IfEq. (8.1.7) holds true, we have 

OJsinOJr2 ] 
=cosOJ(r1-r2 ):;t:0. 

cosOJr2 

(8.1.7) 

(8.1.8) 

Theoretically speaking, two control parameters are enough in order to adjust the 

above equivalent stiffuess and damping if they are properly chosen. The simplest 

example is the state feedback without any time delays. In this case, Eq. (8.1.8) be­

comes 

[U]=[l O][k-ke ]. 
vOl c-ce 

(8.1.9) 

Hence, the feedback paths of displacement and velocity alter the equivalent stiff­

ness and damping of system, or equivalently, the resonant frequency and resonant 

peak of system, respectively. 

Now, we consider the delayed displacement feedback. Imposing v=o in Eq. 

(8.1.5) yields 

whereby we have 

{
ke(OJ)=k-ucoSOJrp 

ce(OJ )=c+usinOJrl / OJ, 
(8.1.10) 
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(8.1.11) 

Equation (8.1.11) implies that properly selected displacement feedback with a 

time delay can achieve any given equivalent stiffuess and damping of system. 

This fact has found two direct applications, that is, the artificial damping and 
tunable vibration absorbers. In what follows, the artificial damping will be briefly 

discussed, while the tunable vibration absorber will be presented in the next sub­

section. 
Example 8.1.1 As a well-known concept in vibration control, the artificial 

damping can be realized through the use of negative velocity feedback. According 

to Eq. (8.1.11), however, it can also be achieved by means of the delayed dis­
placement feedback. For instance, if the natural frequency of system is fixed and 

the equivalent damping is expected to be larger than the original damping, that is, 

ke(OJ)=k and ce(OJ»c, the control parameters of delayed displacement feedback 
can be chosen as 

(8.1.12) 

The physical meaning behind Eq. (8.1.12) is obvious. That is, the phase delay 1t/2 

in the displacement happens to be the negative velocity since the forced steady 

state vibration of system is harmonic. Hence, the displacement delayed by time 

'\ =1t/2OJ serves as a negative velocity feedback by nature. 

8.1.2 Delayed Resonator: A Tunable Vibration Absorber 

The second application of delayed displacement feedback is in active vibration ab­
sorption. As well known, the classical vibration absorber is an undamped oscilla­
tor. At its natural frequency in frequency domain, the vibration absorber produces 

an anti-resonance for the attached location on a primary system. The active vibra­

tion absorber, hence, is expected to have no damping, but adjustable natural fre­

quency. This task can be completed through the use of an adjustable mass or stiff­

ness coefficient. For the same purpose, the concept of delayed resonator was 

proposed in (Olgac and Holm-Hansen 1995). A delayed resonator is a linear os­

cillator with delayed displacement feedback. It is designed such that the equivalent 

damping vanishes and the natural frequency always coincides with the excitation 

frequency. That is, ce(OJ)=O and ke(OJ)=mOJ 2 • Substituting these requirements 
into Eq. (8.1.11) yields 
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1 _j cm 
T j =-tan ( 2 ) . 

m mm -k 
(8.1.13) 

Because the oscillator is asymptotically stable when the displacement feedback 

has no time delay, T j should be taken as the smallest positive value so that only a 

pair of eigenvalues is pure imaginary numbers and all other eigenvalues have 

negative real parts. That is, the delayed resonator is marginally stable. 

To determine the sign and the shortest time delay in Eq. (8.1.13), we first look 

at a special case when the excitation frequency m=.Jklm . In this case, the mini­

mal positive time delay yields T j =n 1(2m) and the displacement delayed by phase 

nl2 is the negative velocity. Hence, the displacement feedback plays a role in bal­

ancing the damping force only, and the feedback gain should be u=-cm<O. Fig­

ure 8.1.1 shows the dimensionless displacement feedback gain ulk and the time 

delay T j versus the dimensionless excitation frequency A=ml.Jklm at the differ­

ent damping ratio t; =c!.J 4mk . 
In general, the control law of delayed resonator should be 

1 cm 
Tj =-[arctan( 2 )+In], 

m mm -k 

where 

{
O, 

1= 
1, 

mw 2 -k 2 0, 

mm 2 -k < O. 

0.0 
8 

-0.5 6 

ulk --(=0.01 1", 4 

-1.0 --(=0.1 

----. (=0.2 2 

-1.5 LO~.6~~0~.8~~I~.0~~I-=-.2~--:'-I.4~ 
.< 

o 

(8.1.14) 

(8.1.15) 

--(=0.01 

--(=0.1 

----- (=0.2 

1.2 1.4 

Fig. 8.1.1. Desirable displacement feedback gain and time delay in the delayed resonator 
versus dimensionless excitation frequency at different damping ratios 

As an oscillator, the delayed resonator has an adjustable resonant frequency and 

an infinite resonant peak. Theoretically speaking, if such a delayed resonator is 

attached to a linear primary system subject to a harmonic excitation, the forced vi-
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bration at the attached location of primary system can be totally attenuated no 
matter how the excitation frequency varies. Hence, the delayed resonator can be 

used as a tunable vibration absorber. 

Example 8.1.2 As shown in Fig. 8.1.2, the delayed resonator is attached to a 

primary system of single degree of freedom to reduce the vibration of primary 

system subject to a harmonica force f(t)=sinmt. The dynamic equation of this 

combined system reads 

{

ml XI (t)+cI XI (t)+k IXI (t)+cz [XI (t)-x2 (t)]+kz [XI (t)-X2 (t)] 

=u[xI (t-'I )-X2 (t-'I )]+sinmt, 
m2xZ (t)+C2[X2 (t)-XI (t)]+k2 [Xz (t)-XI (t)] 

=U[X2 (1-'1 )-XI (1-'1 )], 

(8.1.16) 

where ml =1.0, kl =1.0, CI =0.10, mz =0.1, k2 =0.1, Cz =0.02 are fixed, U and 

'I are determined from Eq. (8.1.13) for given excitation frequency m. 

~ 

Fig. 8.1.2. A primary system with a delayed resonator as tunable absorber 

Before the control is put into use, the vibration absorber only works near m=l 

and the primary system has two resonance peaks at mnl ",0.8543 and 

mnZ ",1.1705 . Figure 8.1.3 shows the displacements of both primary system and 

vibration absorber under the excitation f(t)=sinI.l705t before and after the con­

trol is actuated. In this case study, Eq. (8.1.14) gives u=-0.0438 and 'I =0.482, 

and the tunable vibration absorber works well. 

It should be noticed that the time delay 'I given in Eq. (8.1.14) may not be 

able to ensure the stability of combined systems because it is derived from the 

critically stability of vibration absorber under the assumption that the primary 

system does not move at all. Thus, the feasible time delay in feedback has to be 

subject to the stability limitation of combined system. As shown in Fig. 8.1.1, the 

time delay 'I given by Eq. (8.1.14) increases very rapidly with decrease of exci­

tation frequency m when m<.jklm, and may excesses the stability threshold of 
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combined system. Therefore, the delayed resonator may work only at a narrow 
frequency range when OJ<-Jklm . In the above case study, for instance, the delay­
ed resonator can not attenuate the resonance at OJ=0.8543 because the combined 
system becomes unstable when OJ~0.892 , which requires X'[ =2.7173. 

4~----------------------------~ 

2 

Xl O~~~~~ffiM~~HWWWWWWW~----~ 

-2 
Control actuated 

-4L-__ ~ __ ~~ __ ~~ __ ~~ __ ~ __ ~ 
o 100 200 300 

o 100 200 300 

Fig. 8.1.3. Displacements of primary system and vibration absorber before and after the 
control is actuated 

To guarantee the robustness of controlled systems, it is better to keep a small 
equivalent damping in the delayed resonator at the cost of an increase in residual 

vibration of primary system. In addition, the time delay X'[ in Eq. (8.1.14) be­
comes very sensitive to any small change of excitation frequency when 
OJ~-Jklm as shown in Fig. 8.1.1 if the oscillator is very slightly damped. To re­
duce the sensitivity, the damping coefficient c should be large enough. However, 
the larger the damping coefficient c, the longer the time delay X'[ in Eq. (8.1.14). 
Hence, the excessive damping coefficient c may indirectly arouse instability. 

Finally, it is worthy to mention that a similar analysis can also be made for the 

delayed velocity feedback. For instance, it is almost the same procedure to con­
struct the control strategy of delayed velocity feedback for a delayed resonator. 

However, the implementations of delayed displacement feedback and delayed ve­

locity feedback may need quite different cost of hardware in practice. 

8.2 Stabilization to Critically Stable Nonlinear Systems 

Stabilization to nonlinear systems in a critical case has received great attention 
over the past decade. The critical case here means that the linearized nonlinear 
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system at its equilibrium has at least one eigenvalue on the imaginary axis, 
whereas the remaining eigenvalues remain on the left half-plane. The center mani­
fold reduction has become a powerful tool to stabilize nonlinear systems of this 
kind, see, for example, (Steiner et al. 1995), (Liaw and Abed 1990), (Liaw 1998), 

and (Behtash and Sastry 1988). By using the technique of center manifold reduc­

tion, Steiner and his colleagues studied how to stabilize a tethered satellite system, 

for which the linearized equation possesses an uncontrollable pair of pure imagi­

nary eigenvalues. Liaw gave a general design frame of stabilization law for non­

linear systems in critical cases in 1998. Yet, those studies focused on the nonlinear 

systems without time delays only. 
As mentioned before, the time delays in controllers and actuators are usually 

unavoidable in controlled mechanical systems, especially in those related to 

tethered satellites, hydraulic actuators, and so on. Thus, great efforts have been 

made to develop the control strategies for stabilizing delayed dynamic systems. 
For instance, a memoryless, full state observer was designed in (Chen 1997) to 

stabilize uncertain dynamic systems with time delay. His design procedure requir­

es solving two linear matrix inequalities. A linear transform was proposed and 

studied in (Fiagdedzi and Pearson 1986), and (Phoojaruenchanachai et al. 1998) to 
simplify the delay differential systems to ordinary differential systems. This ap­

proach involves solving a matrix equation of exponential type. Hence, it is not 

easy to apply these approaches to nonlinear systems with any time delay. 

To stabilize nonlinear dynamic systems, a two-step design procedure was sug­
gested in (Su and Chu 1998) for control law of delayed state feedback. The fIrst 
step is to simplify the nonlinear systems to linear systems by using an appropriate 

nonlinear transform, and the second step is to stabilize the simplifIed linear con­
trollable system with time delay in control path by means of a controller with 
memory. To authors' knowledge, no approach is available to the stabilization of 
critical cases by delayed state feedback. 

The aim of this section is to present a methodological frame for the local stabi­

lization of a dynamic system in critical case by delayed state feedback. To simpli­

fy the analysis, we assume the time delay in controller or actuator to be short. This 

is the case in most applications. As previously analyzed in Sections 2.3 and 5.3, a 

delayed dynamic system may behave completely different from the model simpli­

fIed by using the Taylor approximation or by neglecting the time delay even if the 

time delay is very short. So, the effect of time delay on the system dynamics 

should be taken into account. 
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8.2.1 Statement of Problem 

Consider a problem of the local stabilization, through a delayed feedback, of an n­

dimensional nonlinear system in the form 

x(t)= p(x(t))+bu(t-.) , (8.2.1) 

where XER n, bERn, uER, and .>0 is the time delay in the control path. We as­

sume that p(x) is smooth enough and x=o represents the equilibrium of the 

system. Following the popular notations, we partition the spectrum of matrix 

A=Dxp(O) , the Jacobian of p(x) at x=O, as 

where 

a(A)=ac (A)Ua S (A)Uo-U (A) , 

{
aC(A)={AEa(A) I Re(A)=O}, 

as(A)={AEa(A) I Re(A)<O}, 

aU(A)={AEa(A) I Re(A»O}. 

Obviously, we can transform Eq. (8.2.1) into the following form 

o 

where 

{
a(AII)={AEC I Re(A)=O}, 

a(A22 )={AEC I Re(A)<O}, 

a(A33 )={AEC I Re(A»O}. 

(8.2.2) 

(8.2.3) 

(8.2.4) 

(8.2.5) 

Equation (8.2.4) is linearly stabilizable if and only if the matrices [All hi] and 

[A33 h3] are completely controllable. 

This section will concentrate on the following critical case, where the critical 

eigenvalues are completely uncontrollable, i.e., ht =0, while the remaining eigen­

values are linearly controllable. The task of this section is to construct a feedback 

such that the equilibrium x=O is asymptotically stable. For this purpose, it may 

be necessary to use some quadratic or cubic terms of XI to stabilize the system. 
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8.2.2 Analysis on Stabilization 

Now, we recast Equation (8.2.4) as a more compact form 

{
Xc =Acxc +bjU(t-T)+ F(xc ,xr), 

xr =Arxr +bzU(t-T)+G(Xc ,Xr), 
(8.2.6) 

where Xc ERn" Xr ERn" Ac has only pure imaginary eigenvalues and Ar has 

only those with non-zero real part,. As assumed, bj =0 holds here, but the pair 

[Ar bz ] is linearly controllable. The analysis on the system stabilization includes 

following two steps. 

(1) Simplification of the system equation 

We first convert Equation (8.2.6) into 

{
XC = Acxc + F(xn xr - rT exp[Ar(t- T-s)]bzu(s)ds), 

~r = Arxr +bzu +G(xc, xr - rT exp[Ar(t- T-s)]bzu(s)ds), 

by using a transformation 

(8.2.7) 

(8.2.8) 

where b2 =exp( - Ar T )bz . It is easy to verify that the pair [Ar b2] is controllable 

owing to a controllable pair [Ar bz ], as well as the following full rank matrix 

(8.2.9) 

The theorem of pole assignment in control theory indicates that there exists a gain 
vector CERn, such that the matrix Ar -bzc T is Hurwitz stable. Without loss of 

generality, we assume Ar Hurwitz stable hereinafter. 

Moreover, it is easy to show that the zero solution of Eq. (8.2.7) is also asymp­

totically stable if the zero solution of Eq. (8.2.8) is asymptotically stable under the 

linear or nonlinear control u=u(xnxr) with u(O,O)=O since 

Xr(t) = xr(t) + rT exp[Ar(t- T-s)]b2u(xn xr)ds 

= xr(t)+ r exp[Ar( -T-~)]bzu(xn xr)d~, 
(8.2.10a) 
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IIXr (t)II::;llxr (t)11 

+rllu(xc,xr)ll·max(llexp[-Ar(H~)]II)~O, t~+<X). 
-,;;;,;0 

(S.2.10b) 

To complete the design of local stabilization, some approximation should be 

used to simplity the integral in Eq. (S.2.7). From a practical point of view, a feasi­

ble choice is to assume that the time delay is very short, then 

[, exp[Ar(t-r-s)]b2u(s)ds = exp(-Arr) r exp(-Ar~)b2u(t+~)d~ 
(S.2.11) 

u-A u ~ 
=(TU+ r r2 + ... )b2. 

2 

Thus, Eq. (S.2.7) can be recast in the following form 

{
XC =Acxc + F(xc ,xr -rb2u)+r2 LlF' 

~r =Arxr +b2u+G(xc ,xr -rb2u)+r2 Ltc, 
(S.2.12) 

where LlF and Ltc are the nonlinear terms with respect to xn XC' U, u," . As the 

time delay r is short, r2 LlF and r2 Ltc can be neglected when the local stabiliza­

tion is concerned with. 

In summary, if the time delay is short, the local stabilization related to Eq. 
(S.2.7) can be simplified to the local stabilization problem as following 

{
XC =Acxc +F(xeoxs -rb2u), 

Xs =Asxs +b2u+G(xc ,Xs -rb2u), 
(S.2.13) 

where Ac has only the pure imaginary eigenvalues and As is Hurwitz stable. In 

this case, the integral in Eq. (S.2.S) can be regarded as an approximation of rec­

tangle quadrature. 

(2) Stabilization to the simplified nonlinear system 

Now, we focus on the local stabilization ofEq. (S.2.13) by, using feedback. Let the 

control force be in the form, see, (Liaw and Abed 1990), (Liaw 1995) and (Be­

htash and Sastry 19S5), 

u=-k; Xc +q(xJ, (S.2.14) 

where q(xc) is a nonlinear function in Xc . Then, we have 
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{
XC =Acxc +F(xc,xs), 

Xs =Asxs + Bxc +G(xc ,xs), 
(8.2.15) 

with 

(8.2.16) 

As stated in (Huang 1984), for any matrices A, B and C, the matrix equation 

AX+XB=C (8.2.17) 

is equivalent to a linear equation 

(A®I+I®BT)vec(X)=vec(C) , (8.2.18) 

where ® is the Kronecker product, and vec(X) is the vector composed of the 

columns of X taken in order. Eq. (8.2.17) has a unique solution X if and only if 

none of the eigenvalues A;(A) + f.1/B) of A®I +I®BT are zeros, where A;(A) 

and f.1/B) are the i-th and j-th eigenvalues of A and B, respectively. For 

A"Ac and B in Eq. (8.2.15), thus, there exists a unique matrix E such that 

because A; (As)+ f.1 j ( - Ac )*0 holds for all possible i and j . 

Let y=xc and z=xs -Exc' Then, we cast Eq. (8.2.15) as 

where 

{~~AcY+ f(y,z), 
z-Asz+g(y,z), 

{ f(Y'Z)=F(Y,EY+Z)' 
g(y,z) =G(y,Ey+ z)-E· F(y,Ey+ z). 

(8.2.19) 

(8.2.20) 

(8.2.21) 

As stated in the center manifold theorem, there exists a local invariant manifold 

z=h(y) , which yields the following equation 

Dh(y)[AcY+ f(y,h(y»] =Ash(y)+g(y,h(y» , (8.2.22) 

where Dh(y) is the Jacobian of h with respect to y, and hey) yields h(O)=O 

and Dh(O)=O. The flow on the center manifold satisfies 

y=AcY+ f(y,h(y». (8.2.23) 
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Therefore, to stabilize Eq. (8.2.13), we need to choose u in the form of Eq. 

(8.2.14) such that the zero solution ofEq. (8.2.23) is asymptotically stable. 

Now, it is possible to use the standard stability criteria for autonomous ordinary 
differential equations, see (Behtash and Sastry 1988) and (Guckenhimer and 

Holmes 1983), so as to check the stability of Eq. (8.2.23). For example, the zero 

solution of a two-dimensional differential equation in the form 

[~]==[ ° mo][x]+[f(X'Y)] 
Y -mo ° Y g(x,Y) 

is asymptotically stable if the following condition holds 

I 
:-:=----imo(f xxx + f ryy +gxxy +gm) 
16mo 

+ fx/fxx + fyy)-gxy(gxx +gyy)-fxxgxx + fyygyy]l(x,y)=(O,O) <0. 

8.2.3 Case Studies 

(8.2.24) 

(8.2.25) 

Example 8.2.1 To demonstrate the approach, consider a three-dimensional system 

with a short time delay in the control path as following 

{
X(t)== y(t)-x 3 (t)+ X(t)y2 (t)-2y(t)z(t), 

y(t)=x3 (t)+x(t)z(t), 

z(t)==-5z(t)+u(t-r). 

(8.2.26) 

When u==o and z=O, the system state [x y]T is not asymptotically stable at 

(0,0) . By using the transform 

we arrive at 

'1==z+ Lexp[-5(t-r-s)]u(s)ds, 

x == y-x3 +xy2 -2y{'1- L, exp[-5(t-r-s)]u(s)ds}, 

y==x3 +x{'1- L, exp[-5(t-r-s)]u(s)ds}, 

1] == -5'1+ exp(5r)u. 

Applying the rectangle quadrature to Eq. (8.2.28) gives 

(8.2.27) 

(8.2.28) 
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{
X= y_X3 +xy2 -2Y(1J- reSTu ), 

y=x3 +x(1J-reSTu ), 

it=-51J+e5 •u, 

(8.2.29) 

where the delayed term has disappeared. To stabilize the simplified system, we 

implement a nonlinear control force in the form 

u=ax2+jJxy+yy2. 

Suppose that the center manifold is truncated to order 2, namely, 

h(x,y)=ax2 +bxy+c y2 + h.o.t . 

(8.2.30) 

(8.2.31 ) 

Substituting Eqs. (8.2.30) and (8.2.31) into Eq. (8.2.22) first and then equating the 

coefficients of the state variables, we have the following relationship 

(8.2.32) 

The flow on the center manifold yields 

{
x=y-X3 +xy2 -2y[ax2 +bxy+cy2 _reST (ax2 + jJxy+y y2)]+h.o.t 

(8.2.33) 
y=x3 +x[ax2 +bxy+cy2 _res. (ax2 + jJxy+y/ )]+h.o.t 

which is locally stabilizable at (0,0) . Denote the nonlinear terms in the right-hand 

side of Eq. (8.2.33) by f(x,y) and g(x,y) respectively, the coefficients a, b, c 

and a, jJ, A should be chosen to meet the stability conditions, see (Behtash and 

Sastry 1988), 

namely, 1+a-5ar<0, (8.2.34) 

and 

For r=0.05, a choice for the parameters of center manifold to stabilize Eq. 

(8.2.33) is a=-2.568 , b=-11.81 and c=2.363 , while the corresponding control 

parameters are a=-10, jJ=-50 and y=O. Thus, the control force is 

(8.2.36) 

and the corresponding center manifold is in the form 
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h=-2.568x2 -11.81xy+2.363y 2 +h.o.t. (8.2.37) 

Figure 8.2.1 shows the phase portrait of the flow on the center manifold starting 

from(O.I,-O.l)when r=0.05, a=-lO, jJ=-50and r=O. 

0.04 

y 0.00 
( "\ 

-0.04 

-0.08 

-0.12 
-0.4 -0.2 0.0 0.2 

x 

Fig. 8.2.1. A phase portrait of the flow on the center manifold when r=0.05, a=-IO, 
P=-50 and r=O 

8.2.4 Discussions on Approximate Integrals 

In the design of stabilization strategy in Subsection 8.2.3, the rectangle quadrature 
has been used to simplify the integral in the system equation. In this subsection, 
the feasibility of truncated Eq. (8.2.8) to Eq. (8.2.14) is discussed through a few 
illustrative examples in Subsection 8.2.3. To approximate the integral, either the 

rectangle quadrature or the trapezoidal quadrature, or the Simpson quadrature can 
be implemented if the time delay is short. The approximations of the trapezoidal 

quadrature and the Simpson quadrature to the integral in Eq. (8.2.28) are respec­

tively given as following 

exp(-5(t-r-s»u(s)ds = -[e5Tu(t)+u(t-r)] , It r 

t-T 2 
(8.2.38) 

It r r 
exp[-5(t- r-s)]u(s)ds =_[U(t)e5T +4e5TI2u(t-_)+u(t-r)]. (8.2.39) 

f-T 16 2 

In the following two examples, a comparison is made between the phase portraits 

of [x y]T computed by the rectangle quadrature and the Simpson quadrature with 

variable steps, respectively. 

Example 8.2.2 Consider again the case when a= -10, jJ= -50 and r= O. For 

r= 0.05, we can hardly observe the difference between the two trajectories in Fig. 
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8.2.2a. If we increase the time delay to r=O.I, the difference between the two 

trajectories increases, but is still acceptable. However, when the time delay in­
creases to 0.15, the difference becomes unacceptable, see, Fig. 8.2.2b. In this case, 

the rectangle quadrature is not appropriate for the approximation when the time 

delay is long. However, the two trajectories determined by using the trapezoidal 

quadrature and the Simpson quadrature look almost the same as shown in Fig. 

8.2.2b. 
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Fig. 8.2.2. Comparison between the states [x y]T of Eg. (8.2.28) computed by different 
guadratures for a=-IO, /3=-50 and y=O; a. 1'=0.05, b. r=0.15 

Example 8.2.3 Consider the case when a= -10, /3= -4 and y= O. We have the 

similar results as those in Example 8.2.2. Figure 8.2.3 shows the differences be­

tween the phase portraits of [x y]T for r= 0.05 and 0.1, respectively. 
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Fig. 8.2.3. Comparison between the states [x y]T of Eg. (8.2.28) computed by different 
guadratures for a=-IO, /3=-4 and y=O; a. r=0.05, b. r=0.1 
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The above examples indicate that when the time delay is considerably short, the 

approximation by the rectangle quadrature gives excellent accuracy for the local 
stabilization. If the time delay is not so short, the approach may result in a wrong 

stability prediction. In this case, it is necessary to implement more accurate 

quadratures, such as the trapezoidal quadrature and the Simpson quadrature. As 
shown in Eqs. (8.2.38) and (8.2.39), the controlled system in this case yields a set 

of delay differential equations. 

In summary, when the time delay in control path is short, the local stabilization, 

by means of delayed state feedback, for ordinary differential systems in critical 
cases can be completed in two steps. The key step is to convert the dynamic sys­

tem under delayed control into a slightly perturbed dynamic system governed by a 

set of ordinary differential equations. Once the simplified system equation is ob­

tained, the center manifold technique can be applied to the local stabilization. The 

analysis and numerical examples indicate that the approach gives the approxima­

tion excellent accuracy if the time delay is short enough, and consequently, the 

center manifold reduction to the local stabilization works effectively. However, if 

the time delay is long, the approach may not predict the stabilization correctly. 

8.3 Controlling Chaotic Motion 

The early studies on controlling chaos mainly focused on the attenuation of cha­
otic motion through the use of available techniques in control engineering until 
Ott, Grebogi and Yorke proposed their seminal control strategy, see (Ott et al. 
1990). The idea of this control strategy, usually referred to as OGY control, is 

quite interesting. One of the infmite number of unstable periodic motions em­

bedded in the chaotic attractor is chosen as the target first, then the chaotic motion, 

as soon as it wanders into the neighborhood of target, is directed to the stable in­

variant manifold of the target and stabilized. Compared with previous studies, 

OGY control makes use of the features of chaos, and thus needs very little control 

energy and small structural modification. Over the past decade, OGY control has 

received great attention and had many varieties. Among them, the delayed linear 

feedback control proposed in (Pyragas 1992) is a simple, but effective one. This 

subsection presents the delay control ofPyragas through an example of controlling 

the chaotic motion of a harmonically forced Duffing oscillator, and addresses an 

open problem in the design of delayed feedback. 
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8.3.1 Basic Idea 

Consider an n-dimensional non-autonomous system described by 

z(t) = f(z(t),t), ZERn, (8.3.1 ) 

where f: R n+1 ~w is of period T with respect to t. Suppose that the system has 
a chaotic attractor, where an infinite number of unstable periodic orbits are em­

bedded. Among them, an unstable motion zp(t) of period r=mT is selected as 

the target of control, where m is a positive integer. To direct a chaotic motion 

z(t) near zp(t) to Zp(t) , a control force g(t) is introduced into the system. Mo­
re specifically, Eq. (8.3.1) with the control force g(t) is partitioned as 

{
X(t)= p(x(t),y(t),t), 

y( t)=q( x(t),y(t),t)+ g(t), 
(8.3.2) 

where YER is an observable and controllable state variable and XEW-1 is the 

vector of remaining state variables which are not available or not of interest for 

observation. As suggested in (Pyragas 1992), the control force can be a delayed 

linear feedback as following 

g(t)=v[y(t)-y(t-r)] , (8.3.3) 

where v is an experimentally adjustable feedback gain. The objective of control 

now is to reduce the Lyapunov exponents of system through the use of delayed 

linear feedback such that the unstable periodic motion zp(t) becomes stable. 
When z(t) arrives at Zp(t) , g(t)=O holds. That is, the introduced control force 
g(t) does not change the target of control. The control force g(t) can be actuated 
again whenever the motion z(t) deviates from the target Zp (t) to a certain extent. 

Example 8.3.1 To demonstrate the efficacy of delayed linear feedback, we 
consider a harmonically forced Duffing oscillator as follows 

{
X(t)=y(t), xER, 

y(t)=x(t)-x 3 (t)-O.02y(t)+2.5cost. 
(8.3.4) 

Fig. 8.3.la shows a chaotic motion of the oscillator obtained in the numerical 

simulation, and the corresponding chaotic attractor embeds an infmite number of 

unstable periodic orbits. Among them, a prioid-l orbit shown in Fig. 8.3.lb was 

taken as the target of control so that the delayed linear feedback became 

g(t)=v[y(t)-y(t-2n)] , (8.3.5) 
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where v was set to -0.25 after a few tests. The forced motion of oscillator without 

control exhibited chaotic behavior within the first 30 circles of excitation, namely, 

t$;601t:::::188.5s, and then became periodic gradually after the delayed feedback 

control was put to use. Figure 8.3.2 shows the time histories of both displacement 

and control force of the above process. When the forced motion of oscillator look-

ed periodic, the control force approached to zero. 

4 a. 4 b. 

2 2 

Y 0 Y 0 

-2 -2 

-4 -4 

-3 -2 -1 0 2 3 -3 -2 -1 0 2 3 
x x 

Fig. 8.3.1. Phase portraits of Eq. (8.3.4); a. a chaotic motion, b. a period-l motion 
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2 
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I 

Fig. 8.3.2. Controlling process of a chaotic motion 

8.3.2 Choice of Feedback Gain 

The success of delayed linear feedback relies on a proper choice of feedback gain. 

To acquire a good understanding of this problem, we look at the stabilization of 

unstable Zp (t) of period r by using a full state feedback, so that Eq. (8.3.1) be­

comes 
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z(t)= f(z(t),t)+U[z(t)-z(t-r)] , (8.3.6) 

where U is the constant matrix of state feedback gain. 
The small perturbation &;(t) near the unstable periodic motion zp(t) yields a 

set of linear delay differential equations with periodic coefficients as following 

M(t)=DJ(zp(t),t)&;(t)+U[&;(t)-&;(t-r)] . (8.3.7) 

The Floquet theory extended in (Hale 1977) indicates that &;(t) should be in the 

form 

&;(t) = exp[(A+in)t]u(t) , (8.3.8) 

where A and fJ are the diagonal matrices for real and imaginary parts of the 

Floquet exponents of Eq. (8.3.7), and u(t) is a function vector of period r. Sub­

stituting Eq. (8.3.8) into Eq. (8.3.7) yields 

ti(t)+(A+ifJ)u(t) = {D.!(zp(t),t)+U{I -exp[-(A+ifJ)r]} }u(t) 

== A(U,t)u(t). 
(8.3.9) 

Let rA(U) be the matrix of the Floquet exponents of matrix A(U,t) , depending 

on the matrix U of feedback gain. That is, 

A+in=FAU) . (8.3.10) 

When U = 0 , we have r A (0)=.10 +iUo , representing the diagonal matrix of the 

Floquet exponents ofEq. (8.3.1) evaluated at the unstable periodic motion zp(t). 
In this case, at least one Floquet exponent in Ao is positive. The task of stabiliza­
tion of Zp (t) , thus, is to choose the matrix U of state feedback gain properly so 

that all entries in A are negative. 

Unfortunately, it is only possible to determine r A (U) approximately or nu­

merically. In (Just et al. 1997), for instance, rAU) was written as the Taylor ex­

pansion truncated to the fIrst order and the choice of U was discussed for some 

special cases. Even in this approximation, it is still an open problem to determine 

the Jacobian DUrA(O) for the Taylor expansion. 

In practice, therefore, it seems only possible to determine the feedback gain ex­

perimentally, rather than theoretically. To get rid of the difficulty in the try-and­

error process, the possibility of automatic adjustment of time delay and feedback 

gain was explored in (Kittle et al. 1995) and (Nakajima et al. 1997). If the control 

strategy is numerically simulated in advance, then the continuation technique can 

be used to determine the feedback gain according to the variation of the largest 

Lyapunov exponent of calculated phase trajectory. 
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